Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Process Impacts ; 22(2): 364-380, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31942891

ABSTRACT

River islands (Ait or Eyot) within the inner tidal Thames serve as unique recorders of current and historical estuarine chemical pollution. Sediment cores from Chiswick Ait were assessed for contamination using Microtox® solid phase bioassay, stable isotopes (δ13C, δ15N), heavy metals and polychlorinated biphenyls (PCBs). Microtox® classified these sediments as non-toxic to moderately toxic and bulk isotopes identified a change in organic input. Metals Cu, Zn, Cr, Ni, Cd, Hg and Ag showed parallel rise, peak and fall profiles which when allied to a 207/208Pb and 137Cs based chronology supported major changes in trace metal contributions corresponding to approximate input times of 1940 (rise), 1963 (peak) and 1985 (fall). Metals ranged from Cu 15 to 373 mg kg-1 (mean 141 mg kg-1), Zn 137 to 1331 mg kg-1 (mean 576 mg kg-1), Cr 14-351 mg kg-1 (mean 156 mg kg-1), Pb 10 to 1506 mg kg-1 (mean 402 mg kg-1), As 1 to 107 (mean 38 mg kg-1), Ni 11 to 113 mg kg-1 (mean 63 mg kg-1), Cd 0.2 to 53 mg kg-1 (mean 9 mg kg-1), Hg 1 to 8 mg kg-1 (mean 4.6 mg kg-1) and Ag from 0.7 to 50 mg kg-1 (mean 7.5 mg kg-1). Down core total PCBs ranged from 10.5 to 121 µg kg-1 and mean of 39 µg kg-1. The rise, peak and fall of Cu, Zn, Cr, Ni, Cd and Ag pollution matched local sewage works' treatment discharge records. Whereas the Hg, Pb and As profiles were disconnected, reflecting alternative historic sources and or partitioning behaviour. Comparison to marine sediment quality guidelines indicate that Zn, Pb, Ni, Cd and Hg exceed action level 2, whereas sedimentary Cu, Cr and As concentrations were above action level 1 (no action) but below action level 2 (further investigation required). The river islands of the tidal Thames capture a unique contaminant chemistry record due in part to their location in the tidal frame (salinity minimum) and close proximity to west London.


Subject(s)
Metals, Heavy , Polychlorinated Biphenyls , Water Pollutants, Chemical , China , Environmental Monitoring , Estuaries , Geologic Sediments , London , Metals, Heavy/toxicity , Polychlorinated Biphenyls/toxicity , Rivers , Water Pollutants, Chemical/toxicity
2.
Environ Geochem Health ; 42(4): 1109-1115, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31175489

ABSTRACT

Understanding the risks of a developing unconventional hydrocarbons industry, including shale gas, to the chemical quality of surface water and groundwater involves firstly establishing baseline compositions against which any future changes can be assessed. Contaminants of geogenic origin are of particular interest and radon has been identified as one potential contaminant from shale sources. Robust measurement and monitoring of radon in water at environmental concentrations is essential for ensuring protection of water sources and maintaining public confidence. Traditional techniques for Rn-222 determination in water, such as inference by gamma spectrometry and direct alpha counting, are impractical for direct field measurement, and the relatively short half-life of Rn-222 (~ 3.82 days) means that longer analytical protocols from field to the laboratory may result in greater uncertainty for Rn-222 activity. Therefore, a rapid and low-cost method would be beneficial. We have developed and refined a laboratory procedure for Rn-222 monitoring using liquid scintillation counting (LSC). The accuracy of Rn-222 activities obtained via this procedure was evaluated by the analysis of almost 200 water samples collected from streams and boreholes as part of a detailed baseline investigation in the Vale of Pickering, Yorkshire, one potential location for future shale gas exploration. LSC was preferred for measurement of Rn-222 and had comparable accuracy to gamma spectrometry and direct alpha counting. The methodology provided a rapid, portable and low-maintenance option relative to the two established techniques and is shown to be a favourable choice for the measurement of radon in surface water and groundwater at environmental concentrations.


Subject(s)
Fresh Water/analysis , Radon/analysis , Scintillation Counting/methods , Water Pollutants, Radioactive/analysis , Groundwater/analysis , Radiation Monitoring , Rivers , Spectrometry, Gamma/methods , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...