Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 13: 767455, 2022.
Article in English | MEDLINE | ID: mdl-35495139

ABSTRACT

Increasing evidence that microRNAs (miRNAs) play a key role in carcinogenesis has revealed the need for elucidating the mechanisms of miRNA regulation and the roles of miRNAs in gene-regulatory networks. A better understanding of the interactions between miRNAs and their mRNA targets will provide a better understanding of the complex biological processes that occur during carcinogenesis. Increased efforts to reveal these interactions have led to the development of a variety of tools to detect and understand these interactions. We have recently described a machine learning approach miRcorrNet, based on grouping and scoring (ranking) groups of genes, where each group is associated with a miRNA and the group members are genes with expression patterns that are correlated with this specific miRNA. The miRcorrNet tool requires two types of -omics data, miRNA and mRNA expression profiles, as an input file. In this study we describe miRModuleNet, which groups mRNA (genes) that are correlated with each miRNA to form a star shape, which we identify as a miRNA-mRNA regulatory module. A scoring procedure is then applied to each module to further assess their contribution in terms of classification. An important output of miRModuleNet is that it provides a hierarchical list of significant miRNA-mRNA regulatory modules. miRModuleNet was further validated on external datasets for their disease associations, and functional enrichment analysis was also performed. The application of miRModuleNet aids the identification of functional relationships between significant biomarkers and reveals essential pathways involved in cancer pathogenesis. The miRModuleNet tool and all other supplementary files are available at https://github.com/malikyousef/miRModuleNet/.

2.
Turk J Biol ; 46(4): 318-341, 2022.
Article in English | MEDLINE | ID: mdl-37529091

ABSTRACT

Type 2 diabetes mellitus (T2D) constitutes 90% of the diabetes cases, and it is a complex multifactorial disease. In the last decade, genome-wide association studies (GWASs) for T2D successfully pinpointed the genetic variants (typically single nucleotide polymorphisms, SNPs) that associate with disease risk. In order to diminish the burden of multiple testing in GWAS, researchers attempted to evaluate the collective effects of interesting variants. In this regard, pathway-based analyses of GWAS became popular to discover novel multigenic functional associations. Still, to reveal the unaccounted 85 to 90% of T2D variation, which lies hidden in GWAS datasets, new post-GWAS strategies need to be developed. In this respect, here we reanalyze three metaanalysis data of GWAS in T2D, using the methodology that we have developed to identify disease-associated pathways by combining nominally significant evidence of genetic association with the known biochemical pathways, protein-protein interaction (PPI) networks, and the functional information of selected SNPs. In this research effort, to enlighten the molecular mechanisms underlying T2D development and progress, we integrated different in silico approaches that proceed in top-down manner and bottom-up manner, and presented a comprehensive analysis at protein subnetwork, pathway, and pathway subnetwork levels. Using the mutual information based on the shared genes, the identified protein subnetworks and the affected pathways of each dataset were compared. While most of the identified pathways recapitulate the pathophysiology of T2D, our results show that incorporating SNP functional properties, PPI networks into GWAS can dissect leading molecular pathways, and it could offer improvement over traditional enrichment strategies.

3.
PeerJ ; 9: e11458, 2021.
Article in English | MEDLINE | ID: mdl-34055490

ABSTRACT

A better understanding of disease development and progression mechanisms at the molecular level is critical both for the diagnosis of a disease and for the development of therapeutic approaches. The advancements in high throughput technologies allowed to generate mRNA and microRNA (miRNA) expression profiles; and the integrative analysis of these profiles allowed to uncover the functional effects of RNA expression in complex diseases, such as cancer. Several researches attempt to integrate miRNA and mRNA expression profiles using statistical methods such as Pearson correlation, and then combine it with enrichment analysis. In this study, we developed a novel tool called miRcorrNet, which performs machine learning-based integration to analyze miRNA and mRNA gene expression profiles. miRcorrNet groups mRNAs based on their correlation to miRNA expression levels and hence it generates groups of target genes associated with each miRNA. Then, these groups are subject to a rank function for classification. We have evaluated our tool using miRNA and mRNA expression profiling data downloaded from The Cancer Genome Atlas (TCGA), and performed comparative evaluation with existing tools. In our experiments we show that miRcorrNet performs as good as other tools in terms of accuracy (reaching more than 95% AUC value). Additionally, miRcorrNet includes ranking steps to separate two classes, namely case and control, which is not available in other tools. We have also evaluated the performance of miRcorrNet using a completely independent dataset. Moreover, we conducted a comprehensive literature search to explore the biological functions of the identified miRNAs. We have validated our significantly identified miRNA groups against known databases, which yielded about 90% accuracy. Our results suggest that miRcorrNet is able to accurately prioritize pan-cancer regulating high-confidence miRNAs. miRcorrNet tool and all other supplementary files are available at https://github.com/malikyousef/miRcorrNet.

4.
F1000Res ; 9: 1255, 2020.
Article in English | MEDLINE | ID: mdl-33500779

ABSTRACT

In our earlier study, we proposed a novel feature selection approach, Recursive Cluster Elimination with Support Vector Machines (SVM-RCE) and implemented this approach in Matlab. Interest in this approach has grown over time and several researchers have incorporated SVM-RCE into their studies, resulting in a substantial number of scientific publications. This increased interest encouraged us to reconsider how feature selection, particularly in biological datasets, can benefit from considering the relationships of those genes in the selection process, this led to our development of SVM-RCE-R. The usefulness of SVM-RCE-R is further supported by development of maTE tool, which uses a similar approach to identify microRNA (miRNA) targets. We have now implemented the SVM-RCE-R algorithm in Knime in order to make it easier to apply and to make it more accessible to the biomedical community. The use of SVM-RCE-R in Knime is simple and intuitive, allowing researchers to immediately begin their data analysis without having to consult an information technology specialist. The input for the Knime tool is an EXCEL file (or text or CSV) with a simple structure and the output is also an EXCEL file. The Knime version also incorporates new features not available in the previous version. One of these features is a user-specific ranking function that enables the user to provide the weights of the accuracy, sensitivity, specificity, f-measure, area under curve and precision in the ranking function, allowing the user to select for greater sensitivity or greater specificity as needed. The results show that the ranking function has an impact on the performance of SVM-RCE-R. Some of the clusters that achieve high scores for a specified ranking can also have high scores in other metrics. This finding motivates future studies to suggest the optimal ranking function.


Subject(s)
MicroRNAs , Support Vector Machine , Algorithms
SELECTION OF CITATIONS
SEARCH DETAIL
...