Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Nutr ; 10: 1167259, 2023.
Article in English | MEDLINE | ID: mdl-37360301

ABSTRACT

Aim: Dietary approaches for the regulation of blood pressure are the need of the hour. Hence, identifying the foods possessing such activity is gaining importance. With this aim, moth bean (Vigna aconitifolia), an underutilized pulse, was explored for the presence of antihypertensive activity in terms of angiotensin converting enzyme (ACE)-inhibition bioactivity. Methods: Defatted moth bean protein concentrate was hydrolyzed by using different proteases including Alcalase, papain, and trypsin, to identify the enzyme producing highly potent ACE inhibitory peptides. The hydrolysate showing the highest ACE inhibitory activity was further fractionated using an ultrafiltration membrane (10, 3 and 1 kDa) based on ACE inhibitory activity. The active fraction was further subjected to the ion-exchange chromatography followed by RP-HPLC and LC-MS/MS analysis for the enrichment and identification of ACE inhibitory peptides. Finally, based on the bioinformatic analysis, few peptides were synthesized and evaluated for ACE inhibitory activity, followed by docking study and molecular dynamic simulation of a peptide with the highest ACE inhibitory activity. Results and discussion: Out of the three proteases, Alcalase-derived hydrolysate showed the highest (~59%) ACE inhibition activity. Molecular weight-based fractionation revealed that <1 kDa fraction possessed the highest ACE inhibitory activity. Activity guided separation of 1 kDa fraction using ion-exchange chromatography, RP-HPLC and LC-MS/MS showed the presence of about 45 peptides. Based on the bioinformatic analysis, 15 peptides were synthesized and evaluated for ACE inhibitory activity. Among these, a novel octapeptide FPPPKVIQ showed the highest ACE inhibitory activity (93.4%) with an IC50 of 0.24 µM. This peptide retained about 59% activity post gastrointestinal digestion simulation. A Dixon plot as well as docking studies revealed the uncompetitive inhibitory nature of this peptide with a Ki value of 0.81 µM. Molecular dynamic simulation studies till 100 ns ensured the stability of the ACE-peptide complex. Conclusion: Thus, present study identified a novel potent ACE inhibitory peptide from moth bean that can be incorporated in a functional dietary formulation for regulation of hypertension.

2.
Anal Methods ; 14(4): 480-490, 2022 01 27.
Article in English | MEDLINE | ID: mdl-34989722

ABSTRACT

Ruxolitinib, a kinase inhibitor, was subjected to stress studies as described in the ICH Q1A(R2) guidelines. Solution state hydrolytic and solid state oxidative and thermal stress studies were carried out to understand its degradation behaviour. The drug showed significant instability in the hydrolytic condition in comparison with other conditions. HPLC and UHPLC methods were developed for the separation of the drug and its hydrolytic degradation products. Mass fragmentation pathway of the drug was established as the first step of the LC-MS characterization of the degradation products. MS/MS analysis of the drug and MS3 of selected fragments were achieved through QTOF and QTRAP by varying the collision energy and performing an H/D exchange. LC-MS/MS QTOF studies were subsequently carried out on stress samples and the structures of the degradation products were identified through comparison of the drug fragmentation pathways. The four hydrolytic products viz. 4-(1H-pyrazol-4-yl)-7H-pyrrolo[2,3-d]pyrimidine, 3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanoic acid, 3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanamide, and 3-(4-(6-amino-5-formylpyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile were formed under acidic and basic conditions. The degradation pathway was delineated through a mechanistic explanation. The in silico tools preADMET and Protox-II predictor were used to compare the toxicity of the impurities with respect to the drug.


Subject(s)
Drug Development , Nitriles/chemistry , Pyrazoles/chemistry , Pyrimidines/chemistry , Chromatography, Liquid/methods , Drug Stability , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...