Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Tissue Bank ; 23(1): 79-92, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33768473

ABSTRACT

Biological detergents like sodium deoxycholate, sodium dodecyl sulphate and Triton X-100 impairs the collagenous and non-collagenous proteins, glycosaminoglycans and growth factors. Further, certain chemical and enzymes are responsible for residual cytotoxicity in the decellularized extracellular matrix. The main focus of this study was to explore the decellularization property of soap nut pericarp extract (SPE) for development of decellularized tubular esophageal scaffold. For this 2.5, 5.0 and 10% concentrations of SPE were used for decellularization of caprine esophageal tissues. Histological analysis of hematoxylin and eosin and Masson's trichrome stained tissue samples confirmed decellularization with preservation of extracellular matrix microarchitecture. Scanning electron microscopic images of luminal surface of decellularized esophageal matrix showed randomly oriented collagen fibres with large interconnected pores and cells were absent. However, the external surface was more textured with fibrous structures and collagen fibres were well preserved. DAPI stained decellularized tissues revealed complete removal of nuclear components, verified by DNA content measurement and SDS-PAGE. The FTIR spectra of decellularized esophagus shows absorption peaks of amide A, B, I, II and III. Elastic modulus of the decellularized esophagus scaffolds increased (P > 0.05) as compared to native tissues. Histological and scanning electron microscopic evaluation of in vitro seeded scaffolds showed attachment and growth of primary chicken embryo fibroblasts over and within the decellularized scaffolds. It was concluded that 5% SPE is ideal for preparation of cytocompatible decellularized caprine esophageal scaffold with well-preserved extracellular matrix architecture and, may be used as an alternative to biological detergents and other chemicals.


Subject(s)
Sapindus , Tissue Engineering , Animals , Chick Embryo , Esophagus , Extracellular Matrix , Fruit , Goats , Plant Extracts , Tissue Engineering/methods , Tissue Scaffolds/chemistry
2.
Micron ; 142: 102997, 2021 03.
Article in English | MEDLINE | ID: mdl-33388519

ABSTRACT

The aim of this study is to develop a novel decellularization method using aqueous extract of soap nut pericarp (SPE) and its evaluation using hematoxylin-eosin staining, scanning electron microscopy, diamidino-2-phenylindol (DAPI) staining, mechanical testing, sodium dodecyl sulfate polyacrylamide gel electrophoresis and DNA quantification. The presently available decellularization agent raises some concerns due to the potential for presence of residual cytotoxic agents in the extracellular matrix. Histological analysis of hematoxylin and eosin and masson's trichrome stained processed aortic samples shows complete decellularization with preservation of extracellular matrix microarchitecture at 120 h. Further, staining of tissue samples with DAPI demonstrates complete removal of DNA fragments. Quantitative evaluation of DNA in the decellularized aorta tissues demonstrated a significant (P < 0.01) decrease in DNA content as compared to native tissues. Collagen quantification assay indicate no significant (P> 0.05) difference in its content between native and decellularized caprine aorta. Tensile strength of the decellularized scaffolds decreased non-significantly (P > 0.05) when compared to native tissues. There was no significant (P > 0.05) difference in young's modulus of elasticity, stiffness and stretch ratio between native aortic tissues and decellularized aortic scaffolds. Histological and scanning electron microscopic examination of in vitro cultured scaffold demonstrated the cell viability and proliferation of primary chicken embryo fibroblasts. SPE treatment is thus capable of producing cytocompatible decellularized caprine aorta scaffold with preservation of extracellular matrix architecture for vascular tissue engineering and could be applied widely as one of the decellularization agent.


Subject(s)
Aorta/cytology , Cell Separation/methods , Plant Extracts , Sapindus , Tissue Engineering/methods , Tissue Scaffolds , Animals , Biomechanical Phenomena , Cell Survival , Chick Embryo , Collagen , Extracellular Matrix , Fibroblasts/metabolism , Fruit/chemistry , Goats , Histocompatibility , Microscopy, Electron, Scanning , Plant Extracts/chemistry , Regenerative Medicine , Sapindus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...