Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Funct ; 14(18): 8129-8156, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37656123

ABSTRACT

This review aims to provide an updated overview of edible insect proteins and the bioactivity of insect-derived peptides. The essential amino acid content of edible insects is compared with well-known protein sources to demonstrate that edible insects have the potential to cover the protein quality requirements for different groups of the population. Then the current methodologies for insect protein extraction are summarized including a comparison of the protein extraction yield and the final protein content of the resulting products for each method. Furthermore, in order to improve our understanding of insect proteins, their functional properties (such as solubility, foaming capacity, emulsifying, gelation, water holding capacity and oil holding capacity) are discussed. Bioactive peptides can be released according to various enzymatic hydrolysis protocols. In this context, the bioactive properties of insect peptides (antihypertensive, antidiabetic, antioxidant and anti-inflammatory properties) have been discussed. However, the allergens present in insect proteins are still a major concern and an unsolved issue for insect-based product consumption; thus, an analysis of cross reactivity and the different methods available to reduce allergenicity are proposed. Diverse studies of insect protein hydrolysates/peptides have been ultimately promoting the utilization of insect proteins for future perspectives and the emerging processing technologies to enhance the wider utilization of insect proteins for different purposes.


Subject(s)
Edible Insects , Animals , Allergens , Peptides , Protein Hydrolysates , Insect Proteins
2.
Carbohydr Polym ; 198: 556-562, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30093034

ABSTRACT

The materials produced by the supercritical CO2 drying have outstanding properties that allow the incorporation of molecules in their porous structure. In this context, dried chitosan nanoparticles including ß-lactoglobulin were obtained. First, the nanoparticles in water suspension were produced by ionotropic gelation incorporating the protein with high loading efficiency. Later, solvent exchange and CO2 supercritical drying procedures were performed. The physicochemical characteristics and structural properties were determined, demonstrating a stable porous structure in the dried materials and corroborating the presence of the protein after the drying. The CO2 supercritical dried chitosan nanoparticles can be effectively resuspended in acidic aqueous medium remaining in the nanoscale with minimum effect on the loading parameters. The release of the ß-lactoglobulin was highly influenced by the pH, reaching around 40% under acidic conditions in ten hours. The obtained results demonstrate the possibility to apply these chitosan materials as a controlled release material.

SELECTION OF CITATIONS
SEARCH DETAIL
...