Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 21(18): 21162-75, 2013 Sep 09.
Article in English | MEDLINE | ID: mdl-24103990

ABSTRACT

The present study provides an extensive overview of red and near infra-red (NIR) spectral relationships found in the literature and used to constrain red or NIR-modeling schemes in current atmospheric correction (AC) algorithms with the aim to improve water-leaving reflectance retrievals, ρw(λ), in turbid waters. However, most of these spectral relationships have been developed with restricted datasets and, subsequently, may not be globally valid, explaining the need of an accurate validation exercise. Spectral relationships are validated here with turbid in situ data for ρw(λ). Functions estimating ρw(λ) in the red were only valid for moderately turbid waters (ρw(λNIR) < 3.10(-3)). In contrast, bounding equations used to limit ρw(667) retrievals according to the water signal at 555 nm, appeared to be valid for all turbidity ranges presented in the in situ dataset. In the NIR region of the spectrum, the constant NIR reflectance ratio suggested by Ruddick et al. (2006) (Limnol. Oceanogr. 51, 1167-1179), was valid for moderately to very turbid waters (ρw(λNIR) < 10(-2)) while the polynomial function, initially developed by Wang et al. (2012) (Opt. Express 20, 741-753) with remote sensing reflectances over the Western Pacific, was also valid for extremely turbid waters (ρw(λNIR) > 10(-2)). The results of this study suggest to use the red bounding equations and the polynomial NIR function to constrain red or NIR-modeling schemes in AC processes with the aim to improve ρw(λ) retrievals where current AC algorithms fail.

2.
Opt Express ; 21(18): 21176-87, 2013 Sep 09.
Article in English | MEDLINE | ID: mdl-24103991

ABSTRACT

Spectral relationships, reflecting the spectral dependence of water-leaving reflectance, ρw(λ), can be easily implemented in current AC algorithms with the aim to improve ρw(λ) retrievals where the algorithms fail. The present study evaluates the potential of spectral relationships to improve the MUMM [Ruddick et al., 2006, Limnol. Oceanogr. 51, 1167-1179] and standard NASA [Bailey et al., 2010, Opt. Express 18, 7521-7527] near infra-red (NIR) modeling schemes included in the AC algorithm to account for non-zero ρw(λNIR), based on in situ coastal ρw(λ) and simulated Rayleigh corrected reflectance data. Two modified NIR-modeling schemes are investigated: (1) the standard NASA NIR-modeling scheme is forced with bounding relationships in the red spectral domain and with a NIR polynomial relationship and, (2) the constant NIR ρw(λ) ratio used in the MUMM NIR-modeling scheme is replaced by a NIR polynomial spectral relationship. Results suggest that the standard NASA NIR-modeling scheme performs better for all turbidity ranges and in particular in the blue spectral domain (percentage bias decreased by approximately 50%) when it is forced with the red and NIR spectral relationships. However, with these new constraints, more reflectance spectra are flagged due to non-physical Chlorophyll-a concentration estimations. The new polynomial-based MUMM NIR-modeling scheme yielded lower ρw(λ) retrieval errors and particularly in extremely turbid waters. However, including the polynomial NIR relationship significantly increased the sensitivity of the algorithm to errors on the selected aerosol model from nearby clear water pixels.


Subject(s)
Algorithms , Atmosphere/chemistry , Models, Theoretical , Spectroscopy, Near-Infrared , United States National Aeronautics and Space Administration , Chlorophyll/analysis , Chlorophyll A , Nephelometry and Turbidimetry , United States , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...