Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neurophotonics ; 6(2): 025003, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31037243

ABSTRACT

Blood vessel injury during image-guided brain biopsy poses a risk of hemorrhage. Approaches that reduce this risk may minimize related patient morbidity. We present here an intraoperative imaging device that has the potential to detect the brain vasculature in situ. The device uses multiple diffuse reflectance spectra acquired in an outward-viewing geometry to detect intravascular hemoglobin, enabling the construction of an optical image in the vicinity of the biopsy needle revealing the proximity to blood vessels. This optical detection system seamlessly integrates into a commercial biopsy system without disrupting the neurosurgical clinical workflow. Using diffusive brain tissue phantoms, we show that this device can detect 0.5-mm diameter absorptive carbon rods up to ∼ 2 mm from the biopsy window. We also demonstrate feasibility and practicality of the technique in a clinical environment to detect brain vasculature in an in vivo model system. In situ brain vascular detection may add a layer of safety to image-guided biopsies and minimize patient morbidity.

2.
Biomed Opt Express ; 6(11): 4238-54, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26600990

ABSTRACT

A brain needle biopsy procedure is performed for suspected brain lesions in order to sample tissue that is subsequently analysed using standard histopathology techniques. A common complication resulting from this procedure is brain hemorrhaging from blood vessels clipped off during tissue extraction. Interstitial optical tomography (iOT) has recently been introduced by our group as a mean to assess the presence of blood vessels in the vicinity of the needle. The clinical need to improve safety requires the detection of blood vessels within 2 mm from the outer surface of the needle, since this distance is representative of the volume of tissue that is aspirated durirng tissue extraction. Here, a sensitivity analysis is presented to establish the intrinsic detection limits of iOT based on simulations and experiments using brain tissue phantoms. It is demonstrated that absorbers can be detected with diameters >300 µm located up to >2 mm from the biopsy needle core for bulk optical properties consistent with brain tissue.

3.
Opt Lett ; 40(2): 170-3, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25679836

ABSTRACT

The extraction of tissue samples during brain needle biopsy can cause life-threatening hemorrhage because of significant blood vessel injury during the procedure. Vessel rupture can have significant consequences for patient health, ranging from transient neurological deficits to death. Here, we present a sub-diffuse optical tomography technique that can be integrated into neurosurgical workflow to detect the presence of blood vessels. A proof-of-concept study performed on a realistic brain tissue phantom is presented and demonstrates that interstitial optical tomography (iOT) can detect several 1 mm diameter high-contrast absorbing objects located <2 mm from the needle.


Subject(s)
Biopsy, Needle/methods , Brain/pathology , Safety , Surgery, Computer-Assisted/methods , Tomography, Optical , Biopsy, Needle/adverse effects , Brain/blood supply , Humans , Phantoms, Imaging , Surgery, Computer-Assisted/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...