Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Plant Physiol ; 97(1): 317-21, 1991 Sep.
Article in English | MEDLINE | ID: mdl-16668388

ABSTRACT

In Hevea brasiliensis, the rubber particle in the laticiferous vessel is the site of rubber (cis-1-4-polyisoprene) biosynthesis. A 14 kilodalton protein, rubber elongation factor (REF), is associated with the rubber particle in a ratio of one REF to one rubber molecule (Dennis M, Henzel W, Bell J, Kohr W, Light D [1989] J Biol Chem 264: 18618-18628; Dennis M, Light D [1989] J Biol Chem 264: 18608-18617). To obtain more information concerning the function of REF and its synthesis and assembly in the rubber particle, we isolated cDNA clones encoding REF. We used antibodies to REF to screen a Hevea leaf gammagt11 cDNA expression library and obtained several positive clones. Sequence analysis of the REF cDNA clones showed that the REF mRNA contains 121 nucleotides of 5'-nontranslated sequences and a 205 nucleotide 3'-nontranslated region. The open reading frame encodes the entire 14 kilodalton REF protein without any extra amino acids (Dennis M, Henzel W, Bell J, Kohr W, Light D [1989] J Biol Chem 264: 18618-18628). The REF cDNA was subcloned in pGEM-3Z/-4Z and expressed in vitro. The translation product is a 14 kilodalton protein that can be immunoprecipitated with antibodies to REF. Addition of microsomal membranes to the in vitro translation product did not alter the mobility of the REF protein. This, and the sequence data, indicate that REF is not made as a preprotein. Our results suggest that REF is synthesized on free polysomes in the laticifer cytoplasm and that assembly of the rubber particles is likely to occur in the cytosol.

3.
Photochem Photobiol ; 52(1): 43-50, 1990 Jul.
Article in English | MEDLINE | ID: mdl-2399285

ABSTRACT

RbcS-3A, the most highly expressed member of the pea multigene family encoding the small subunit of ribulose 1,5-bisphosphate carboxylase, is expressed in a light-dependent and organ-specific manner. In order to further delineate the sequences which mediate this complex pattern of regulation, putative regulatory sequences were assayed for function in transgenic tobacco plants in the context of an inactive 5' deleted rbcS-3A test gene. We have identified a minimal functional unit of 58 bp which is able to confer organ-specific transcriptional activity. It contains two sequences conserved among the pea rbcS family members, namely box II (-151 to -138; GTGTGGTTAATATG) and box III (-125 to -114; ATCATTTTCACT). These sequences bind the nuclear factor termed GT-1 in vitro. Substitution mutations within this 58 bp element have demonstrated that sequences upstream of, or located between, boxes II and III are not required for the transcriptional activity conferred by this element. Distance and orientation of these sequences from the gene are not critical for activity within the limits tested. DNA fragments upstream of nucleotide -170 of rbcS-3A that contain other GT-1 binding sites can also confer regulated expression upon the rbcS-3A promoter deleted to -50. Multimers of individual motifs, namely four tandem copies of boxes II and III, are unable to drive expression of the deleted promoter. These observations suggest that while GT-1 binding is necessary for promoter activity it is by itself not sufficient.


Subject(s)
Fabaceae/genetics , Gene Expression , Nicotiana/genetics , Plants, Medicinal , Plants, Toxic , Ribulose-Bisphosphate Carboxylase/genetics , Base Sequence , Cloning, Molecular , Gene Expression/radiation effects , Genes, Plant , Light , Molecular Sequence Data , Multigene Family , Promoter Regions, Genetic , Transfection
4.
Proc Natl Acad Sci U S A ; 87(5): 1787-90, 1990 Mar.
Article in English | MEDLINE | ID: mdl-11607069

ABSTRACT

Natural rubber, cis-1,4-polyisoprene, is obtained from a colloidal fluid called latex, which represents the cytoplasmic content of the laticifers of the rubber tree (Hevea brasiliensis). We have developed a method of extracting translatable mRNA from freshly tapped latex. Analysis of in vitro translation products of latex mRNA showed that the encoded polypeptides are very different from those of leaf mRNA and these differences are visible in the protein profiles of latex and leaf as well. Northern blot analysis demonstrated that laticifer RNA is 20- to 100-fold enriched in transcripts encoding enzymes involved in rubber biosynthesis. Plant defense genes encoding chitinases, pathogenesis-related protein, phenylalanine ammonia-lyase, chalcone synthase, chalcone isomerase, cinnamyl alcohol dehydrogenase, and 5-enolpyruvylshikimate-3-phosphate synthase show a 10- to 50-fold higher expression in laticifers than in leaves, indicating the probable response of rubber trees to tapping and ethylene treatment. Photosynthetic genes encoding ribulose-bisphosphate carboxylase small subunit and chlorophyll a/b-binding protein are not expressed at a detectable level in laticifers. In contrast, genes encoding two hydrolytic enzymes, cellulase and polygalacturonase, are more highly expressed in laticifers than in leaves. Transcripts for the cytoplasmic form of glutamine synthase are preferentially expressed in laticifers, whereas those for the chloroplastic form of the same enzyme are present mainly in leaves. Control experiments demonstrated that beta-ATPase, actin, and ubiquitin are equally expressed in laticifers and leaves. Therefore, the differences in specific transcript abundance between laticifers and leaves are due to differential expression of the genes for these transcripts in the laticifers.

5.
Proc Natl Acad Sci U S A ; 85(13): 4662-6, 1988 Jul.
Article in English | MEDLINE | ID: mdl-3387433

ABSTRACT

Expression of the pea rbcS-3A gene, one of a family of genes encoding the small subunit of ribulose-bisphosphate carboxylase [EC 4.1.1.39], is regulated by light and is restricted to chloroplast-containing cells. We analyzed the effects of light and development on rbcS-3A expression in transgenic plants. Two highly conserved sequences ("boxes" II and III) around nucleotide position -150 (relative to the transcription initiation site, +1) are required for rbcS-3A expression. The so-defined positive elements overlap with previously identified negative light-regulatory elements. In the case of box II, which has sequence similarity to the core enhancer motif of simian virus 40, a GG----CC transversion is sufficient to abolish expression. The effect of mutations in boxes II and III can only be measured when sequences upstream of -170 are removed, and because sequences both 5' and 3' of -170 can direct light-regulated and organ-specific expression. This implies that there is a redundancy of cis-acting elements in the 5' noncoding region of rbcS-3A. However, we show that the sequences upstream of -170 are dispensable only in the mature leaves of a green plant. In contrast, in the young, expanding leaves at the top of a green plant, as well as in seedlings, the distal elements are required for high-level expression. Therefore, redundancy is not absolute, and the requirements for rbcS-3A expression change during plant development.


Subject(s)
Fabaceae/genetics , Plant Proteins/genetics , Plants, Medicinal , Regulatory Sequences, Nucleic Acid , Ribulose-Bisphosphate Carboxylase/genetics , Base Sequence , Fabaceae/enzymology , Genes/radiation effects , Light , Molecular Sequence Data , Organ Specificity , Regulatory Sequences, Nucleic Acid/radiation effects
6.
DNA ; 5(2): 101-13, 1986 Apr.
Article in English | MEDLINE | ID: mdl-3519133

ABSTRACT

To compare the effects of different transformation methods on the integration behavior and structural stability of integrated foreign genes in plant cells, tobacco protoplasts were transformed with Escherichia coli plasmid pLGV2103neo DNA using the Ca phosphate DNA coprecipitation technique. Parallel transformations were done by cocultivation with Agrobacterium tumefaciens harboring the Ti plasmid derivatives pGV3850::2103neo or pGV3850::1103neo. A comparison of the fine structure of the integrated donor DNA obtained by direct gene transfer and by cocultivation indicates that the donor DNA in cells transformed by the former technique undergoes structural changes and concatemerizations, while the DNA integrated by the latter procedure is often unaltered. The cotransformed nopaline synthase gene, which is present in the donor Ti plasmid DNA, was inactivated in two out of nine cases. Once integrated, the arrays of selectable marker DNA appear to be structurally stable under different cell culture and selection conditions, as well as after genetic transmission.


Subject(s)
DNA, Bacterial/genetics , Nicotiana/genetics , Plants, Toxic , Transformation, Genetic , Amino Acid Oxidoreductases/genetics , Bacterial Proteins/genetics , Calcium Phosphates , DNA, Recombinant/analysis , Genes, Bacterial , Genetic Techniques , Meiosis , Plasmids , Protoplasts , Rhizobium/genetics , Rhizobium/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...