Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36555462

ABSTRACT

During mouse pregnancy placental lactogens stimulate prolactin receptors on pancreatic islet beta cells to induce expression of the tryptophan hydroxylase Tph1, resulting in the synthesis and secretion of serotonin. Presently, the functional relevance of this phenomenon is unclear. One hypothesis is that serotonin-induced activation of 5-HT2B receptors on beta cells stimulates beta cell proliferation during pregnancy. We tested this hypothesis via three different mouse models: (i) total Tph1KO mice, (ii) 129P2/OlaHsd mice, which are incompetent to upregulate islet Tph1 during pregnancy, whereas Tph1 is normally expressed in the intestine, mammary glands, and placenta, and (iii) Htr2b-deficient mice. We observed normal pregnancy-induced levels of beta cell proliferation in total Tph1KO mice, 129P2/OlaHsd mice, and in Htr2b-/- mice. The three studied mouse models indicate that islet serotonin production and its signaling via 5-HT2B receptors are not required for the wave of beta cell proliferation that occurs during normal mouse pregnancy.


Subject(s)
Insulin-Secreting Cells , Islets of Langerhans , Female , Animals , Pregnancy , Mice , Serotonin/metabolism , Placenta/metabolism , Islets of Langerhans/metabolism , Insulin-Secreting Cells/metabolism , Cell Proliferation , Tryptophan Hydroxylase/genetics , Tryptophan Hydroxylase/metabolism
2.
PLoS One ; 12(8): e0181651, 2017.
Article in English | MEDLINE | ID: mdl-28792951

ABSTRACT

The specific phenotype of mature differentiated beta cells not only depends on the specific presence of genes that allow beta cell function but also on the selective absence of housekeeping genes ("disallowed genes") that would interfere with this function. Recent studies have shown that both histone modifications and DNA methylation via the de novo methyltransferase DNMT3A are involved in repression of disallowed genes in neonatal beta cells when these cells acquire their mature phenotype. It is unknown, however, if the environmental influence of advanced age, pregnancy and the metabolic stress of high fat diet or diabetes could alter the repression of disallowed genes in beta cells. In the present study, we show that islet disallowed genes-which are also deeply repressed in FACS-purified beta cells-remain deeply repressed in animals of advanced age and in pregnant females. Moreover, the stability of this repression was correlated with strong and stable histone repression marks that persisted in islets isolated from 2 year old mice and with overall high expression of Dnmt3a in islets. Furthermore, repression of disallowed genes was unaffected by the metabolic stress of high fat diet. However, repression of about half of the disallowed genes was weakened in 16 week-old diabetic db/db mice. In conclusion, we show that the disallowed status of islet genes is stable under physiological challenging conditions (advanced age, pregnancy, high fat diet) but partially lost in islets from diabetic animals.


Subject(s)
Aging/physiology , DNA Methylation/genetics , Diabetes Mellitus/metabolism , Diet, High-Fat , Histone Code/genetics , Insulin-Secreting Cells/metabolism , Stress, Physiological/physiology , Animals , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A , Female , Glucose Tolerance Test , Insulin/metabolism , Insulin-Secreting Cells/cytology , Mice , Mice, Inbred C57BL , Mice, Obese , Pregnancy
3.
Diabetologia ; 59(7): 1356-1363, 2016 07.
Article in English | MEDLINE | ID: mdl-27056372

ABSTRACT

Pregnancy is a key mammalian reproductive event in which growth and differentiation of the fetus imposes extra metabolic and hormonal demands on the mother. Its successful outcome depends on major changes in maternal blood circulation, metabolism and endocrine function. One example is the endocrine pancreas, where beta cells undergo a number of changes in pregnancy that result in enhanced functional beta cell mass in order to compensate for the rising metabolic needs for maternal insulin. During the last 5 years, a series of studies have increased our understanding of the molecular events involved in this functional adaptation. In the mouse, a prominent functional change during pregnancy is the capacity of some beta cells to produce serotonin. In this review we will discuss the mechanism and potential effects of pregnancy-related serotonin production in beta cells, considering functional consequences at the local intra-islet and systemic level.


Subject(s)
Islets of Langerhans/metabolism , Serotonin/metabolism , Animals , Female , Insulin-Secreting Cells/metabolism , Mice , Pregnancy , Receptors, Prolactin/genetics , Receptors, Prolactin/metabolism , Serotonin/genetics , Tryptophan Hydroxylase/metabolism
4.
Endocrinology ; 157(2): 648-65, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26562264

ABSTRACT

Androgen deficiency is associated with obesity, metabolic syndrome, and type 2 diabetes mellitus in men, but the mechanisms behind these associations remain unclear. In this study, we investigated the combined effects of androgen deficiency and high-fat diet (HFD) on body composition and glucose homeostasis in C57BL/6J male mice. Two models of androgen deficiency were used: orchidectomy (ORX) and androgen receptor knockout mice. Both models displayed higher adiposity and serum leptin levels upon HFD, whereas no differences were seen on a regular diet. Fat accumulation in HFD ORX animals was accompanied by increased sedentary behavior and occurred in spite of reduced food intake. HFD ORX mice showed white adipocyte hypertrophy, correlated with decreased mitochondrial content but not function as well as increased lipogenesis and decreased lipolysis suggested by the up-regulation of fatty acid synthase and the down-regulation of hormone-sensitive lipase. Both ORX and androgen receptor knockout exacerbated HFD-induced glucose intolerance by impairing insulin action in liver and skeletal muscle, as evidenced by the increased triglyceride and decreased glycogen content in these tissues. In addition, serum IL-1ß levels were elevated, and pancreatic insulin secretion was impaired after ORX. Testosterone but not dihydrotestosterone supplementation restored the castration effects on body composition and glucose homeostasis. We conclude that sex steroid deficiency in combination with HFD exacerbates adiposity, insulin resistance, and ß-cell failure in 2 preclinical male mouse models. Our findings stress the importance of a healthy diet in a clinical context of androgen deficiency and may have implications for the prevention of metabolic alterations in hypogonadal men.


Subject(s)
Androgens/deficiency , Diet, High-Fat , Glucose Intolerance/etiology , Obesity/etiology , Receptors, Androgen/genetics , Adiposity/genetics , Animals , Body Composition/genetics , Disease Progression , Glucose Intolerance/genetics , Glucose Intolerance/metabolism , Glucose Intolerance/pathology , Hypogonadism/complications , Hypogonadism/genetics , Hypogonadism/pathology , Insulin Resistance/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/genetics , Obesity/metabolism , Obesity/pathology
5.
PLoS One ; 10(3): e0121868, 2015.
Article in English | MEDLINE | ID: mdl-25816302

ABSTRACT

Pregnancy requires a higher functional beta cell mass and this is associated with profound changes in the gene expression profile of pancreatic islets. Taking Tph1 as a sensitive marker for pregnancy-related islet mRNA expression in female mice, we previously identified prolactin receptors and placental lactogen as key signalling molecules. Since beta cells from male mice also express prolactin receptors, the question arose whether male and female islets have the same phenotypic resilience at the mRNA level during pregnancy. We addressed this question in vitro, by stimulating cultured islets with placental lactogen and in vivo, by transplanting male or female islets into female acceptor mice. Additionally, the islet mRNA expression pattern of pregnant prolactin receptor deficient mice was compared with that of their pregnant wild-type littermates. When cultured with placental lactogen, or when transplanted in female recipients that became pregnant (day 12.5), male islets induced the 'islet pregnancy gene signature', which we defined as the 12 highest induced genes in non-transplanted female islets at day 12.5 of pregnancy. In addition, serotonin immunoreactivity and beta cell proliferation was also induced in these male transplanted islets at day 12.5 of pregnancy. In order to further investigate the importance of prolactin receptors in these mRNA changes we used a prolactin receptor deficient mouse model. For the 12 genes of the signature, which are highly induced in control pregnant mice, no significant induction of mRNA transcripts was found at day 9.5 of pregnancy. Together, our results support the key role of placental lactogen as a circulating factor that can trigger the pregnancy mRNA profile in both male and female beta cells.


Subject(s)
Insulin-Secreting Cells/transplantation , Placental Lactogen/blood , Pregnancy/genetics , RNA, Messenger/genetics , Receptors, Prolactin/metabolism , Animals , Cell Proliferation , Cells, Cultured , Female , Gene Expression Profiling , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/drug effects , Male , Mice , Placental Lactogen/pharmacology , Pregnancy/blood , Receptors, Prolactin/genetics
6.
Cell Metab ; 20(6): 979-90, 2014 Dec 02.
Article in English | MEDLINE | ID: mdl-25470546

ABSTRACT

The human growth hormone (hGH) minigene is frequently used in the derivation of transgenic mouse lines to enhance transgene expression. Although this minigene is present in the transgenes as a secondcistron, and thus not thought to be expressed, we found that three commonly used lines, Pdx1-Cre(Late), RIP-Cre, and MIP-GFP, each expressed significant amounts of hGH in pancreatic islets. Locally secreted hGH binds to prolactin receptors on ß cells, activates STAT5 signaling, and induces pregnancy-like changes in gene expression, thereby augmenting pancreatic ß cell mass and insulin content. In addition, islets of Pdx1-Cre(Late) mice have lower GLUT2 expression and reduced glucose-induced insulin release and are protected against the ß cell toxin streptozotocin. These findings may be important when interpreting results obtained when these and other hGH minigene-containing transgenic mice are used.


Subject(s)
Human Growth Hormone/metabolism , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Animals , Female , Human Growth Hormone/genetics , Humans , Male , Mice , Mice, Transgenic , Receptors, Prolactin/genetics , Receptors, Prolactin/metabolism , Tryptophan Hydroxylase/genetics , Tryptophan Hydroxylase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...