Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(24)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38138773

ABSTRACT

The interest in and application of metal organic frameworks (MOF) is increasing every year. These substances are widely used in many places, including the separation and storage of gases and energy, catalysis, electrochemistry, optoelectronics, and medicine. Their use in polymer technology is also increasing, focusing mainly on the synthesis of MOF-polymer hybrid compounds. Due to the presence of metal ions in their structure, they can also serve as a component of the crosslinking system used for curing elastomers. This article presents the possibility of using zeolitic imidazolate framework ZIF-8 or MOF-5 as activators for sulfur vulcanization of styrene-butadiene rubber (SBR), replacing zinc oxide in conventional (CV) or effective (EF) curing systems to different extents. Their participation in the curing process and influence on the crosslinking density and structure, as well as the mechanical and thermal properties of the rubber vulcanizates, were examined.

2.
Int J Mol Sci ; 24(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36982646

ABSTRACT

The goal of this study was to compare the mechanical properties of experimental resin dental composites containing a conventional photoinitiating system (camphorquinone CQ and 2-(dimethylami-no)ethyl methacrylate (DMAEMA)) to a photoinitiator system containing 1-phenyl-1,2 propanedione (PPD) with 2-(dimethylami-no)ethyl methacrylate) or acting alone phenylbis(2,4,6-trimethylbenzoyl)-phosphine oxide (BAPO). The manually produced composites consisted of an organic matrix: bis-GMA (60 wt. %), TEGDMA (40 wt. %), and silanized silica filler (45 wt. %). The composites contained 0.4/0.8 wt. %, 0.8/1.6 wt. %, and 1/2 wt. % of PPD/DMAEMA and another group included 0.25, 0.5, or 1 wt. % of BAPO. Vickers hardness, microhardness (in the nanoindentation test), diametral tensile strength, and flexural strength were assessed, and CIE L* a* b* colorimetric analysis was conducted for each composite produced. The highest average Vickers hardness values were obtained for the composite containing 1 wt. % BAPO (43.73 ± 3.52 HV). There was no statistical difference in the results of diametral tensile strength for the experimental composites tested. The results of 3-point bending tests were the highest for composites containing CQ (77.3 ± 8.84 MPa). Despite the higher hardness of experimental composites including PPD or BAPO, compared with composites with CQ, the overall results indicate that the composite with CQ still represents a better solution when used as a photoinitiator system. Moreover, the composites containing PPD and DMAEMA are not promising in terms of color or mechanical properties, especially as they require significantly longer irradiation times.


Subject(s)
Composite Resins , Oxides , Methacrylates , Bisphenol A-Glycidyl Methacrylate , Polyethylene Glycols , Materials Testing
3.
Int J Mol Sci ; 23(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36232894

ABSTRACT

The aim of this research was to compare the biomechanical properties of experimental composites containing a classic photoinitiating system (camphorquinone and 2-(dimethylami-no)ethyl methacrylate) or diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (TPO) as a photoinitiator. The produced light-cured composites consisted of an organic matrix-Bis-GMA (60 wt.%), TEGDMA (40 wt.%) and silanized silica filler (45 wt.%). Composites contained 0.27; 0.5; 0.75 or 1 wt.% TPO. Vickers hardness, microhardness (in the nanoindentation test), diametral tensile strength, resistance to three-point bending and the CIE L* a* b* colorimetric analysis was performed with each composite produced. The highest average Vickers hardness values were obtained for the composite containing 1 wt.% TPO (43.18 ± 1.7HV). The diametral tensile strength remains on regardless of the type and amount of photoinitiator statistically the same level, except for the composite containing 0.5 wt.% TPO for which DTS = 22.70 ± 4.7 MPa and is the lowest recorded value. The highest average diametral tensile strength was obtained for the composite containing 0.75 wt.% TPO (29.73 ± 4.8 MPa). The highest modulus of elasticity characterized the composite containing 0.75 wt.% TPO (5383.33 ± 1067.1 MPa). Composite containing 0.75 wt.% TPO has optimal results in terms of Vickers hardness, diametral tensile strength, flexural strength and modulus of elasticity. Moreover, these results are better than the parameters characterizing the composite containing the CQ/DMAEMA system. In terms of an aesthetic composite containing 0.75 wt.%. TPO is less yellow in color than the composite containing CQ/DMAEMA. This conclusion was objectively confirmed by test CIE L* a* b*.


Subject(s)
Composite Resins , Oxides , Amines , Biphenyl Compounds , Bisphenol A-Glycidyl Methacrylate , Camphor/analogs & derivatives , Materials Testing , Methacrylates , Phosphines , Polyethylene Glycols , Silicon Dioxide
4.
Materials (Basel) ; 15(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36079361

ABSTRACT

Fly ash (FA) fractions with a particle size of 63 µm < FA < 250 µm obtained by sieve fractionation were used as a partial carbon black (CB) replacement in a rubber mixture based on styrene-butadiene rubber (SBR). In order to improve the interactions at the interface between rubber and fractionated ash, at the stage of preparing the rubber mixtures, two different vinyl silanes were added to the system: Vinyltrimethoxysilane (U-611) or Vinyl-tris (2-methoxy-ethoxy) silane (LUVOMAXX VTMOEO DL50), silane with epoxy groups: 3-(glycidoxypropyl)trimethoxysilane (U-50) or sulfur functionalized silanes: containing sulfide bridges: Bis(triethoxysilylpropyl)polysulfide silane (Si-266) or mercapto groups: Mercaptopropyltrimethoxysilane (Dynaslan MTMO). The conducted research confirmed the effectiveness of silanization with selected functional silanes, from the point of view of improving the processing and operational properties of vulcanizates, in which CB is partially replaced with the finest fractions of fly ash. The silanization generally increased the interaction at the rubber−ash interface, while improving the degree of filler dispersion in the rubber mixture. The results of TGA and FTIR analyses confirmed the presence of silanes chemically bonded to the surface of fly ash particles. SEM tests and determination of the bound rubber (BdR) content show that the introduction of the silanes to the mixture increases the degree of ash dispersion (DI) and the Payne effect, which is the greatest when mercaptosilane was used for modification. The highest increase in torque, which was recorded in the case of rubber mixtures containing sulfur silanes and silane with epoxy groups, may be due to their participation in the vulcanization process, which is confirmed by the results of vulcametric studies. The lowest values of mechanical strength, elongation at break, and the highest hardness of vulcanizates obtained in this case may be the result of the over-crosslinking of the rubber. The addition of sulfur-containing silanes significantly slowed down the vulcanization process, which is particularly visible (up to three times extension of the t90 parameter, compared to mixtures without silane) in the case of Si-266. The addition of silanes, except for Si-266 (with a polysulfide fragment), generally improved the abrasion resistance of vulcanizates. The Dynaslan MTMO silane (with mercapto groups) performs best in this respect. Proper selection of silane for the finest fraction of fly ash in the rubber mixtures tested allows for an increase in the mechanical strength of their vulcanizates from 9.1 to 17 MPa, elongation at break from 290 to 500%, hardness from 68 to 74 °ShA, and reduction in abrasion from 171 to 147 mm3.

5.
Article in English | MEDLINE | ID: mdl-35564635

ABSTRACT

Gloves are one of the most important elements of personal protective equipment (PPE). To improve gloves properties, a lot of different methods of surface modifications are used. In this work, the application of geometric, chemical, and plasma surface modifications to improve the hydrophobicity of butyl (IIR) and silicone (MVQ) rubber are described. To characterise surface properties contact angle measurements, FT-IR spectroscopy and scanning electron microscopy were used. This study showed that when the chemical modification applied, the contact angle value increases compared to non-modified samples. In addition, plasma modification raised the contact angle value and smoothed the surface morphology. An increase in the polymer surfaces hydrophobicity was the observed effect of the three modifications of rubber.


Subject(s)
Polymers , Rubber , Gloves, Protective , Hydrophobic and Hydrophilic Interactions , Polymers/chemistry , Spectroscopy, Fourier Transform Infrared , Surface Properties
6.
Materials (Basel) ; 15(5)2022 Feb 26.
Article in English | MEDLINE | ID: mdl-35269004

ABSTRACT

With the continuing growth of waste sulfur production from the petroleum industry processes, its utilization for the production of useful, low-cost, and environmentally beneficial materials is of primary interest. Elemental sulfur has a significant and established history in the modification of bitumen binders, while the sulfur-containing high-molecular compounds are limited in this field. Herein, we report a novel possibility to utilize the sulfur/organic copolymers obtained via the inverse vulcanization process as modifiers for bitumen binders. Synthesis and thermal characterization (TGA-DSC) of polysulfides derived from elemental sulfur (S8) and unsaturated organic species (dicyclopentadiene, styrene, and limonene) have been carried out. The performance of modified bitumen binders has been studied by several mechanical measurements (softening point, ductility, penetration at 25 °C, frass breaking point, adhesion to glass and gravel) and compared to the unmodified bitumen from the perspective of normalized requirements concerning polymer-modified bitumen. The interaction of bitumen binder with sulfur/organic modifier has been studied by means of FTIR spectroscopy and DSC measurements. The impact of the modification on the performance properties of bitumen has been demonstrated. The bitumen binders modified with sulfur/organic copolymers are in general less sensitive to higher temperatures (higher softening point up to 7 °C), more resistant to permanent deformations (lower penetration depth), and more resistant to aging processes without intrusive deterioration of parameters at lower temperatures. What is more, the modification resulted in significantly higher adhesion of bitumen binders to both glass (from 25% up to 87%) and gravel surfaces in combination with a lower tendency to form permanent deformations (more elastic behavior of the modified materials).

7.
Polymers (Basel) ; 13(22)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34833271

ABSTRACT

The aim of this article was to compare the biomechanical properties of commercial composites containing different photoinitiators: Filtek Ultimate (3M ESPE) containing camphorquinone (CQ); Estelite Σ Quick (Tokuyama Dental) with CQ in RAP Technology®; Tetric EvoCeram Bleach BLXL (Ivoclar Vivadent AG) with CQ and Lucirin TPO; and Tetric Evoceram Powerfill IVB (Ivoclar Vivadent AG) with CQ and Ivocerin TPO. All samples were cured with a polywave Valo Lamp (Ultradent Products Inc.) with 1450 mW/cm2. The microhardness, hardness by Vicker's method, diametral tensile strength, flexural strength and contraction stress with photoelastic analysis were tested. The highest hardness and microhardness were observed for Filtek Ultimate (93.82 ± 17.44 HV), but other composites also displayed sufficient values (from 52 ± 3.92 to 58,82 ± 7.33 HV). Filtek Ultimate not only demonstrated the highest DTS (48.03 ± 5.97 MPa) and FS (87.32 ± 19.03 MPa) but also the highest contraction stress (13.7 ± 0.4 MPa) during polymerization. The TetricEvoCeram Powerfill has optimal microhardness (54.27 ± 4.1 HV), DTS (32.5 ± 5.29 MPa) and FS (79.3 ± 14.37 MPa) and the lowest contraction stress (7.4 ± 1 MPa) during photopolymerization. To summarize, Filtek Ultimate demonstrated the highest microhardness, FS and DTS values; however, composites with additional photoinitiators such as Lucirin TPO and Ivocerin have the lowest polymerization shrinkage. These composites also have higher FS and DTS and microhardness than material containing CQ in Rap Technology.

8.
Materials (Basel) ; 14(14)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34300908

ABSTRACT

Ground tire rubber (GTR) is used to decrease the cost of vulcanizates. However, insufficient interactions between GTR particles and rubber matrices make mechanical properties of vulcanizates containing GTR deteriorate. This paper compares original methods of GTR modification. The effects of surface activation of GTR by sulfuric acid (A), its modification by (3-mercaptopropyl)trimethoxy silane (M), or the hybrid treatment-combining both approaches (H), were analyzed in terms of surface energy, specific surface area and morphology of GTR particles. Vulcanizates containing virgin GTR were compared to the rubber filled with the modified GTR particles keeping the same amount of CB in the rubber mix, according to their crosslink density, mechanical and tribological properties. Contrary to the virgin GTR, the addition of modified GTR increases the stiffness of the vulcanizates. The highest changes have been observed for the samples filled with ca. 12 phr of the GTR modified with silane and ca. 25 phr of the GTR subjected to the hybrid treatment, representing the highest crosslink density of rubber vulcanizates filled with GTR. Furthermore, the addition of modified GTR, especially in the case of the samples where 10 phr of rubber was replaced, results in the significant lowering of friction but higher abrasive wear.

9.
Polymers (Basel) ; 13(7)2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33810457

ABSTRACT

This paper examines the influence of the morphology of zinc oxide nanoparticles (n-ZnO) on the activation energy, vulcanization parameters, crosslink density, crosslink structure, and mechanical properties in the extension of the sulfur vulcanizates of styrene-butadiene rubber (SBR). Scanning electron microscopy was used to determine the particle size distribution and morphology, whereas the specific surface area (SSA) and squalene wettability of the n-ZnO nanoparticles were adequately evaluated using the Brunauer-Emmet-Teller (BET) equation and tensiometry. The n-ZnO were then added to the SBR in conventional (CV) or efficient (EV) vulcanization systems. The vulcametric curves were plotted, from which the cure rate index (CRI) rate of the vulcanization and the activation energy were calculated. The influence on the mechanical properties of the SBR vulcanizates was stronger in the case of the EV curing system than when the CV curing system was used. Of the vulcanizates produced in the EV curing system, the best performance was detected for n-ZnO particles with a hybrid morphology (flat-ended rod-like particles on a "cauliflower" base) and high SSA. Vulcanizates produced using the CV curing system showed slightly better mechanical properties after the addition of nanoparticles with a "cauliflower" morphology than when the rod-like type were used, irrespective of their SSA. In general, nanoparticles with a rod-like structure reduced the activation energy and increased the speed of vulcanization, whereas the cauliflower type slowed the rate of the process and the vulcanizates required a higher activation energy, especially when using the EV system. The crosslink structures were also more clearly modified, as manifested by a reduction in the polysulfidic crosslink content, especially when n-ZnO activators with a rod-like morphology were applied.

10.
Polymers (Basel) ; 10(10)2018 Oct 02.
Article in English | MEDLINE | ID: mdl-30961016

ABSTRACT

This paper describes a method of laser ablation for improving the hydrophobic properties of vulcanized rubber. The treatment was tested on acrylonitrile rubber (NBR) and styrene butadiene rubber (SBR) containing carbon nanotubes and soot as fillers. The surface layer of the vulcanizates was modified using a nanosecond-pulsed laser at 1060 nm wavelength. The parameters of the ablation process were congruent, so no chemical changes in the polymeric material were observed. Evaluation of the surface condition of the laser-textured samples was performed using a Leica MZ6 stereoscopic microscope, operating with MultiScan 8.0 image analysis software. The contact angles were determined for all the samples before and after the surface modification process. Following modification of the surface morphology, with the best parameters of laser ablation, the contact angle increased, reaching 147°, which is very close to the threshold of superhydrophobicity (150°). On the basis of the results from several tests, laser ablation with a fiber-pulsed laser can be considered a very useful method for producing rubbers with superhydrophobic surfaces.

11.
Materials (Basel) ; 9(7)2016 Jul 21.
Article in English | MEDLINE | ID: mdl-28773726

ABSTRACT

Ceramifiable styrene-butadiene (SBR)-based composites containing low-softening-point-temperature glassy frit promoting ceramification, precipitated silica, one of four thermally stable refractory fillers (halloysite, calcined kaolin, mica or wollastonite) and a sulfur-based curing system were prepared. Kinetics of vulcanization and basic mechanical properties were analyzed and added as Supplementary Materials. Combustibility of the composites was measured by means of cone calorimetry. Their thermal properties were analyzed by means of thermogravimetry and specific heat capacity determination. Activation energy of thermal decomposition was calculated using the Flynn-Wall-Ozawa method. Finally, compression strength of the composites after ceramification was measured and their micromorphology was studied by scanning electron microscopy. The addition of a ceramification-facilitating system resulted in the lowering of combustibility and significant improvement of the thermal stability of the composites. Moreover, the compression strength of the mineral structure formed after ceramification is considerably high. The most promising refractory fillers for SBR-based ceramifiable composites are mica and halloysite.

SELECTION OF CITATIONS
SEARCH DETAIL
...