Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Folia Morphol (Warsz) ; 79(1): 105-112, 2020.
Article in English | MEDLINE | ID: mdl-30973638

ABSTRACT

BACKGROUND: Coronary vessels have been widely studied in many species of domestic and wild mammals. However, there are no available literature reports describing the morphology and morphometry of the coronary ostia of the European bison (Bison bonasus). The aim of this study was to measure the area of the coronary ostia and assess their localisation in the coronary sinuses of the aortic root in the European bison. MATERIALS AND METHODS: The study material comprised 27 hearts from European bison of both sexes (16 males and 11 females), from 3 months to 26 years old, inhabiting the Bialowieza Forest (Bialowieza National Park, Poland). The animals were divided into two age groups: ≤ 5 years (group I) and > 5 years (group II). RESULTS: In all the studied European bison, the aortic valve consisted of three semilunar leaflets, left, right and septal. The ostia of both coronary arteries were located beneath the sinotubular junction. The dimensions of the left coronary ostium were larger than those of the right coronary ostium. They were longer by on average 4.5 mm (95% confidence interval [CI] 3.5-5.6 mm), they were wider by on average 1.6 mm (95% CI 1.0-2.2 mm) and they had a larger area by on average 31.6 mm2 (95% CI 22.7-40.5 mm2). This was evident both in young and in adult bison. After adjusting for age, there were no differences in the ostia dimensions between males and females. There were no differences in the structure of the left and right coronary arteries in nine animals. In the remaining 18 animals, there were variations in the morphology of the coronary ostia or additional ostia. CONCLUSIONS: Because of the anatomical similarity between the European bison and other ruminants, the results of this study can be applied to the other species including endangered ones.


Subject(s)
Bison/anatomy & histology , Coronary Vessels/anatomy & histology , Heart Valves/anatomy & histology , Animals , Europe , Female , Male
2.
Folia Morphol (Warsz) ; 74(2): 195-205, 2015.
Article in English | MEDLINE | ID: mdl-26050807

ABSTRACT

The lacrimal gland (LG) and superficial gland of the third eyelid (SGTE) belong to accessory organs of the eye. The aim of the present studies was to evaluate the histological, histochemical and fine structure of the LG and SGTE obtained from 3 adult females and 2 adult males of alpaca (Vicugna pacos). The LG was situated in the dorsolateral angle of the orbit between the dorsal rectus and the lateral rectus muscles. The SGTE was located between the medial rectus muscle, the ventral rectus muscle and was partially covered by the ventral oblique muscle of the eyeball. There were no effect of gender on the morphometry of examined LG and SGTE. The third eyelid resembles an anchor in shape. During histological and ultrastructural analyses using light and transmission electron microscopy, it was established that the LG and SGTE are tubulo-acinar glands with mucoserous characters. The LG contains either lymphocytes or plasma cells, while SGTE had rare plasma cells and numerous lymphocytes in connective tissue. The cartilage of the third eyelid was composed of hyaline tissue. Numerous aggregations of lymphocytes as lymph nodules in bulbar surface of the third eyelid were observed. The LG and SGTE secretory cells exhibited a similar ultrastructure appearance in electron microscopic examination, with secretory cells tightly filled with intracytoplasmatic secretory granules and numerous clusters of mucus of different sizes which were observed in the peripheral cells compartment.

3.
Anat Histol Embryol ; 44(5): 345-60, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25223623

ABSTRACT

The aim of this study was the description of the lingual and buccal papillae in adult alpaca (Vicugna pacos) by light and scanning electron microscopy (SEM). The tongue consisted of apex, body and root. Four types of lingual papillae (filiform, fungiform, conical and circumvallate) in addition to two types of buccal papillae were observed. The filiform papillae, some with secondary papillae, were distributed on both the corpus and apex of the tongue, with stratified epithelium, and layer of keratin coat were recognized. The short (small) cone papillae had pointed top, while bunoform papillae were wide with smooth apex. The much less numerous circumvallate papillae with pseudopapillae on the each rim of the caudal lingual body were present with weak layer of keratin and intra-epithelial taste buds. The small fungiform papillae were found on the dorsal lingual surface, while the large fungiform papillae were situated on the ventral surface of the tongue, especially, in rostral part and were round in shape with numerous gustatory pores and very thin keratin coat. Pseudopapillae were present on the buccal conical 'bunoform' papillae surface, while 'elongate' buccal papillae surface was rather softly folded with thin coat of keratin. Microridges were observed in the less keratinized parts of each type of papillae. The orientation of either lingual or buccal papillae into the throat side facilitates the emptying of oral cavity from nutrient and swallowing of food. In conclusion, the anatomical features of the alpaca tongue are an adaptation to the feeding habits.


Subject(s)
Camelids, New World/anatomy & histology , Cheek/anatomy & histology , Microscopy, Electron, Scanning/veterinary , Mouth Mucosa/anatomy & histology , Tongue/anatomy & histology , Animals , Dental Papilla/anatomy & histology , Epithelium , Mouth/anatomy & histology , Taste Buds/anatomy & histology
4.
Anat Histol Embryol ; 44(2): 146-56, 2015 Apr.
Article in English | MEDLINE | ID: mdl-24995381

ABSTRACT

The present investigation was performed on 50 ostriches from 28th day of incubation until the 7th month of life. The morphological (morphometric, histological, histometric and histochemical) studies were conducted. Tissue sections were stained with haematoxylin-eosin, methyl green-pyronin Y, periodic acid-Schiff, alcian blue pH 2.5, aldehyde fuchsin and Hale's dialyzed iron studies. The Harderian gland becomes macroscopically visible on the 28th day of incubation. It is situated in the ventronasal angle of the orbit near inter-orbital septum, between medial rectus muscle, pyramidal and ventral oblique muscles. The Harderian gland of ostrich is a tubulo-acinar gland. The acini were composed of tall conical cells which formed a small lumen and were surrounded by myoepithelial cells. These cells had a granular basophilic, vacuolated cytoplasm. Each of the lobes has a system of complex branching ducts - tertiary, secondary and primary. In the III of research group (3rd week of life), the presence of few plasma cells was demonstrated, which were located within acini and tertiary and secondary ducts, whereas the biggest concentration of plasma cells was observed in group IV of research tissue (4th month of life). The dark cells were observed first time in main ducts 72 h after hatching of nestlings (group II). The morphometric and histometric studies showed that the most intensive growth of Harderian gland occurred between the third week and the seventh month of birds' life. The histochemical study indicated the presence of neutral and acidic mucins, glycoproteins and carboxylated acid mucopolysaccharides.


Subject(s)
Harderian Gland/anatomy & histology , Struthioniformes/anatomy & histology , Animals , Epithelial Cells/cytology , Glycoproteins/metabolism , Glycosaminoglycans/metabolism , Harderian Gland/embryology , Harderian Gland/growth & development , Mucins/metabolism , Plasma Cells/cytology , Struthioniformes/embryology , Struthioniformes/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...