Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36770894

ABSTRACT

The efficiency of an advanced oxidation process (AOP) using direct and indirect ozonation for the removal of pharmaceutical residues from deliberately spiked deionized water was examined. Both direct and indirect ozonation demonstrated 34% to 100% removal of the parent compounds. However, based on the products' chemical structure and toxicity, we suggest that despite using accepted and affordable ozone and radical concentrations, the six parent compounds were not fully degraded, but merely transformed into 25 new intermediate products. The transformation products (TPs) differed slightly in structure but were mostly similar to their parent compounds in their persistence, stability and toxicity; a few of the TPs were found to be even more toxic than their parent compounds. Therefore, an additional treatment is required to improve and upgrade the traditional AOP toward degradation and removal of both parent compounds and their TPs for safer release into the environment.


Subject(s)
Ozone , Water Pollutants, Chemical , Water Purification , Water Pollutants, Chemical/chemistry , Ozone/chemistry , Oxidation-Reduction , Water , Pharmaceutical Preparations
2.
RSC Adv ; 11(30): 18617-18622, 2021 May 19.
Article in English | MEDLINE | ID: mdl-35480917

ABSTRACT

Solid-phase extraction (SPE) based on trimethylsilyloxy-modified silica aerogel was developed for extraction of chemotherapeutic drugs from water. The developed method is easy and affordable, can be performed in separating funnel and does not require a vacuum and SPE manifold. The extraction and recovery of cyclophosphamide (CYP), dexamethasone (DEX), and paclitaxel (TAX) by the aerogel from water were investigated. The factors governing the extraction efficiency such as sample pH, sample volume, volume of eluent and concentration of analytes were studied. The LOD and LOQ of the developed method were calculated and linearity was found in the range of 4-100 µg L-1. The extraction efficiency of the aerogel was compared to that of other SPE cartridges, Oasis HLB, Strata-X-C, C18 and polymeric reversed phase, and the aerogel showed similar or better performance than the other commercial cartridges available on the market. The developed method was also used to extract chemotherapeutic drugs spiked in hospital wastewater.

3.
Materials (Basel) ; 12(24)2019 Dec 09.
Article in English | MEDLINE | ID: mdl-31835331

ABSTRACT

Plastic products in municipal solid waste result in the extraction of phthalates in leachate that also contains large amounts of organic matter, such as humic substances, ammonia, metals, chlorinated organics, phenolic compounds, and pesticide residues. Phthalate esters are endocrine disruptors, categorized as a priority pollutant by the US Environmental Protection Agency (USEPA). Biological processes are inefficient at degrading phthalates due to their stability and toxic characteristics. In this study, the peroxone (ozone/hydrogen peroxide) process (O3/H2O2), an O3-based advanced oxidation process (AOP), was demonstrated for the removal of diethyl phthalate (DEP) in synthetic leachate simulating solid-waste leachate from an open dump. The impact of the O3 dose during DEP degradation; the formation of ozonation intermediate by-products; and the effects of H2O2 dose, pH, and ultraviolet absorbance at 254 nm (UVC) were determined during ozonation. Removal of 99.9% of an initial 20 mg/L DEP was obtained via 120 min of ozonation (transferred O3 dose = 4971 mg/L) with 40 mg/L H2O2 in a semi-batch O3 system. Degradation mechanisms of DEP along with its intermediate products were also determined for the AOP treatment. Indirect OH radical exposure was determined by using a radical probe compound (pCBA) in the O3 treatment.

4.
Sci Total Environ ; 619-620: 578-586, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29156276

ABSTRACT

While ozonation is considered an efficient treatment to eliminate trace organic compounds (TrOCs) from secondary wastewater effluents, the presence and persistence of transformation products (TPs) resulting from ozonation of TrOCs is a major concern that should be assessed prior to effluent discharge to the environment. Venlafaxine (VLX), an environmentally relevant tertiary amine-containing TrOC, was chosen as the model for this study. TP analysis confirmed that the lone electron pair of the non-protonated amine are the predominant site of oxidant attack, and therefore strongly affected by pH value and VLX speciation. N-oxide VLX (NOV), the primary ozone-induced TP, was formed and degraded simultaneously during ozonation of VLX-containing secondary effluent and reached a maximum yield of 0.44 to 0.85 (NOV-to-VLX0 ratio), depending on pH and hydroxyl (OH) radical presence. Rate constants for the reaction of NOV with ozone (3.1×102M-1s-1) and OH radicals (5.3×109M-1s-1) were determined. A simple kinetic model was developed to fit the kinetics of formation and degradation of NOV during ozonation in secondary effluents, based on a known ozone-reaction kinetic equation. The biodegradability of NOV (degradation rate of 39%) was significantly lower than that of the parent compound (VLX, 92%) after 71days, as evaluated by modified Zahn-Wellens tests, suggesting that N-oxide products are not better removed than the parent compound in a simulated biological post-treatment, which may even result in partial reformation of the parent compound. Lessons learned from this study were supported by a pilot-scale demonstration at the Shafdan wastewater-treatment plant, confirming the presence of NOV after ozonation and its persistence in biological post-treatment. Removal of such persistent TP will require higher dosages or promotion of OH-radicals during ozonation. Nevertheless, further assessment of the toxicity of persistent TPs relative to the parent compound is needed for complete evaluation of concerned TPs.

6.
Chemosphere ; 91(7): 985-92, 2013 May.
Article in English | MEDLINE | ID: mdl-23466086

ABSTRACT

Amoxicillin (AMX) is a widely used penicillin-type antibiotic whose presence in the environment has been widely investigated, despite its rapid hydrolysis to various degradation products (DPs). In this work, the formation of AMX DPs was studied in various aqueous solutions containing 100µgmL(-1) AMX. Three phosphate buffer solutions, at pH 5, pH 7 and pH 8, and a fourth buffer solution at pH 7 with the addition of the bivalent ions Mg(2+)and Ca(2) as chelating agents, were examined under controlled environmental conditions. In addition, two solutions from natural sources were examined secondary effluents and tap water. The obtained DPs were identified by their MS/MS, UV and NMR spectra (obtained from pure compounds isolated by preparative HPLC) as: AMX penicilloic acid (ADP1/2), AMX penilloic acid (ADP4/5) and phenol hydroxypyrazine (ADP6). Two additional detected DPs AMX 2',5'-diketopiperazine (ADP8/9), and AMX-S-oxide (ADP3) were reported and discussed in our previous publications. These DPs were then detected in secondary effluent and groundwater from a well located beneath agricultural fields continuously irrigated with secondary effluent. Concentrations in the secondary effluent were: ADP1/2, several micrograms per liter; ADP4/5, 0.15µgL(-1), and ADP8/9, 0.5µgL(-1). ADP6 were detected but not quantified. In the groundwater, only ADP8/9 was detected, at a concentration of 0.03µgL(-1). The detection and quantification of DPs of other investigated drugs is recommended as an integral part of any study, method or technique dealing with pharmaceutical residues in aquatic environments.


Subject(s)
Amoxicillin/analysis , Water Pollutants, Chemical/analysis , Anti-Bacterial Agents/analysis , Hydrogen-Ion Concentration , Models, Chemical
7.
Article in English | MEDLINE | ID: mdl-20183508

ABSTRACT

The short half-life of aminopenicillin antibiotics in the aquatic environment put to the challenge the detection of their degradation products among environmental hydro-chemists. In a quest to study the occurrence of a new emerging micro-pollutant in the aquatic environment we attempted this by analyzing samples from a wastewater treatment plant for a major degradation product of amoxicillin (i.e., amoxicillin-diketopiperazine-2', 5') using a high-performance liquid chromatography technique coupled with tandem mass spectrometry method. ADP was repeatedly detected in all wastewater and effluent samples (18) from which it was extracted. To the best of our knowledge, this is the first study that evidently proves the occurrence of the chemically stable form of AMX, its Diketopiperazine-2', 5', in wastewater and effluent samples. Furthermore, penicillins are known to cause most allergic drug reactions. There is a risk that residues of hypersensitivity-inducing drugs, such as penicillins and their degradation products, may elicit allergic reactions in human consumers of water and food of animal origin.


Subject(s)
Amoxicillin/analysis , Diketopiperazines/analysis , Environmental Monitoring/statistics & numerical data , Waste Disposal, Fluid , Water Pollutants, Chemical/analysis , Amoxicillin/chemistry , Chromatography, High Pressure Liquid , Diketopiperazines/chemistry , Tandem Mass Spectrometry , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...