Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Insects ; 11(4)2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32295253

ABSTRACT

There is an increasing need to monitor activity and population growth of arthropods; however, this is a time-consuming and financially demanding process. Using sensors to detect arthropods in the field can help to follow their dynamics in time. Improving our earlier device, we developed a new camera-supported probe to detect soil microarthropods. An opto-electronic sensor ring detects the caught microarthropod individuals what activates a camera. The camera takes pictures of a specimen when it arrives in the camera chamber. A vacuum device was built into the probe which pumps up the specimen from the probe to a sample container. Here, we describe the construction and operation of the probe. We investigated the precision of the process in a laboratory experiment using living microarthropods and evaluated the accuracy of the probes in a semi-natural investigation when environmental noise was present. Under semi-natural conditions, the percentages of success, i.e., the photographed specimens compared to the caught ones, were between 60% and 70% at the investigated taxa. The automatic camera shooting helped in distinguishing insects from irrelevant detections while collecting the trapped insects allowed species-level determination. This information together serves as a basis for the automatic visual recognition of microarthropod species.

2.
Sensors (Basel) ; 20(4)2020 Feb 12.
Article in English | MEDLINE | ID: mdl-32059444

ABSTRACT

Arthropods, including pollinators and pests, have high positive and negative impacts on human well-being and the economy, and there is an increasing need to monitor their activity and population growth. The monitoring of arthropod species is a time-consuming and financially demanding process. Automatic detection can be a solution to this problem. Here, we describe the setup and operation mechanism of an infrared opto-electronic sensor-ring, which can be used for both small and large arthropods. The sensor-ring consists of 16 infrared (IR) photodiodes along a semicircle in front of an infrared LED. Using 3D printing, we constructed two types of sensor-ring: one with a wider sensing field for detection of large arthropods (flying, crawling, surface-living) in the size range of 2-35 mm; and another one with a narrower sensing field for soil microarthropods in the size range of 0.1-2 mm. We examined the detection accuracy and reliability of the two types of sensor-ring in the laboratory by using particles, and dead and living arthropods at two different sensitivity levels. For the wider sensor-ring, the 95% detectability level was reached with grain particles of 0.9 mm size. This result allowed us to detect all of the macroarthropods that were applied in the tests and that might be encountered in pest management. In the case of living microarthropods with different colors and shapes, when we used the narrower sensor-ring, we achieved the 95% detectability level at 1.1 mm, 0.9 mm, and 0.5 mm in the cases of F. candida, H. nitidus, and H. aculeifer, respectively. The unique potential of arthropod-detecting sensors lies in their real-time measurement system; the data are automatically forwarded to the server, and the end-user receives pest abundance data daily or even immediately. This technological innovation will allow us to make pest management more effective.


Subject(s)
Arthropods/anatomy & histology , Biosensing Techniques/instrumentation , Body Size , Optics and Photonics/instrumentation , Algorithms , Amplifiers, Electronic , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...