Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Mol Cancer Ther ; 23(6): 791-808, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38412481

ABSTRACT

Therapies that abrogate persistent androgen receptor (AR) signaling in castration-resistant prostate cancer (CRPC) remain an unmet clinical need. The N-terminal domain of the AR that drives transcriptional activity in CRPC remains a challenging therapeutic target. Herein we demonstrate that BCL-2-associated athanogene-1 (BAG-1) mRNA is highly expressed and associates with signaling pathways, including AR signaling, that are implicated in the development and progression of CRPC. In addition, interrogation of geometric and physiochemical properties of the BAG domain of BAG-1 isoforms identifies it to be a tractable but challenging drug target. Furthermore, through BAG-1 isoform mouse knockout studies, we confirm that BAG-1 isoforms regulate hormone physiology and that therapies targeting the BAG domain will be associated with limited "on-target" toxicity. Importantly, the postulated inhibitor of BAG-1 isoforms, Thio-2, suppressed AR signaling and other important pathways implicated in the development and progression of CRPC to reduce the growth of treatment-resistant prostate cancer cell lines and patient-derived models. However, the mechanism by which Thio-2 elicits the observed phenotype needs further elucidation as the genomic abrogation of BAG-1 isoforms was unable to recapitulate the Thio-2-mediated phenotype. Overall, these data support the interrogation of related compounds with improved drug-like properties as a novel therapeutic approach in CRPC, and further highlight the clinical potential of treatments that block persistent AR signaling which are currently undergoing clinical evaluation in CRPC.


Subject(s)
Disease Progression , Prostatic Neoplasms, Castration-Resistant , Signal Transduction , Male , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Humans , Animals , Mice , Signal Transduction/drug effects , Receptors, Androgen/metabolism , Cell Line, Tumor , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Proliferation , Xenograft Model Antitumor Assays , Gene Expression Regulation, Neoplastic/drug effects
2.
Cancer Res Commun ; 3(7): 1378-1396, 2023 07.
Article in English | MEDLINE | ID: mdl-37520743

ABSTRACT

The pro-oncogenic activities of estrogen receptor alpha (ERα) drive breast cancer pathogenesis. Endocrine therapies that impair the production of estrogen or the action of the ERα are therefore used to prevent primary disease metastasis. Although recent successes with ERα degraders have been reported, there is still the need to develop further ERα antagonists with additional properties for breast cancer therapy. We have previously described a benzothiazole compound A4B17 that inhibits the proliferation of androgen receptor-positive prostate cancer cells by disrupting the interaction of the cochaperone BAG1 with the AR. A4B17 was also found to inhibit the proliferation of estrogen receptor-positive (ER+) breast cancer cells. Using a scaffold hopping approach, we report here a group of small molecules with imidazopyridine scaffolds that are more potent and efficacious than A4B17. The prototype molecule X15695 efficiently degraded ERα and attenuated estrogen-mediated target gene expression as well as transactivation by the AR. X15695 also disrupted key cellular protein-protein interactions such as BAG1-mortalin (GRP75) interaction as well as wild-type p53-mortalin or mutant p53-BAG2 interactions. These activities together reactivated p53 and resulted in cell-cycle block and the induction of apoptosis. When administered orally to in vivo tumor xenograft models, X15695 potently inhibited the growth of breast tumor cells but less efficiently the growth of prostate tumor cells. We therefore identify X15695 as an oral selective ER degrader and propose further development of this compound for therapy of ER+ breast cancers. Significance: An imidazopyridine that selectively degrades ERα and is orally bioavailable has been identified for the development of ER+ breast cancer therapeutics. This compound also activates wild-type p53 and disrupts the gain-of-function tumorigenic activity of mutant p53, resulting in cell-cycle arrest and the induction of apoptosis.


Subject(s)
Breast Neoplasms , Estrogen Antagonists , Female , Humans , Breast Neoplasms/drug therapy , Estrogen Antagonists/pharmacology , Estrogen Receptor alpha/genetics , Estrogens , Receptors, Estrogen/genetics , Tumor Suppressor Protein p53/genetics
3.
Br J Pharmacol ; 180(21): 2736-2749, 2023 11.
Article in English | MEDLINE | ID: mdl-37254803

ABSTRACT

BACKGROUND AND PURPOSE: In macrophages, transient receptor potential vanilloid 2 (TRPV2) channel contributes to various cellular processes such as cytokine production, differentiation, phagocytosis and migration. Due to a lack of selective pharmacological tools, its function in immunological processes is not well understood and the identification of novel and selective TRPV2 modulators is highly desirable. EXPERIMENTAL APPROACH: Novel and selective TRPV2 modulators were identified by screening a compound library using Ca2+ influx assays with human embryonic kidney 293 (HEK293) cells heterologously expressing rat TRPV2. Hits were further characterized and validated with Ca2+ influx and electrophysiological assays. Phagocytosis and migration of macrophages were analysed and the contribution of TRPV2 to the generation of Ca2+ microdomains was studied by total internal reflection fluorescence microscopy (TIRFM). KEY RESULTS: The compound IV2-1, a dithiolane derivative (1,3-dithiolan-2-ylidene)-4-methyl-5-phenylpentan-2-one), is a potent inhibitor of heterologously expressed TRPV2 channels (IC50 = 6.3 ± 0.7 µM) but does not modify TRPV1, TRPV3 or TRPV4 channels. IV2-1 also inhibits TRPV2-mediated Ca2+ influx in macrophages. IV2-1 inhibits macrophage phagocytosis along with valdecoxib and after siRNA-mediated knockdown. Moreover, TRPV2 inhibition inhibits lipopolysaccharide-induced migration of macrophages whereas TRPV2 activation promotes migration. After activation, TRPV2 shapes Ca2+ microdomains predominantly at the margin of macrophages, which are important cellular regions to promote phagocytosis and migration. CONCLUSIONS AND IMPLICATIONS: IV2-1 is a novel TRPV2-selective blocker and underline the role of TRPV2 in macrophage-mediated phagocytosis and migration. Furthermore, we provide evidence that TRPV2 activation generates Ca2+ microdomains, which may be involved in phagocytosis and migration of macrophages.


Subject(s)
Lipopolysaccharides , Macrophages , Humans , Rats , Animals , Lipopolysaccharides/pharmacology , HEK293 Cells , Phagocytosis , Gene Expression , TRPV Cation Channels/genetics
4.
iScience ; 25(5): 104175, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35479411

ABSTRACT

BAG1 is a family of polypeptides with a conserved C-terminal BAG domain that functions as a nucleotide exchange factor for the molecular chaperone HSP70. BAG1 proteins also control several signaling processes including proteostasis, apoptosis, and transcription. The largest isoform, BAG1L, controls the activity of the androgen receptor (AR) and is upregulated in prostate cancer. Here, we show that BAG1L regulates AR dynamics in the nucleus and its ablation attenuates AR target gene expression especially those involved in oxidative stress and metabolism. We show that a small molecule, A4B17, that targets the BAG domain downregulates AR target genes similar to a complete BAG1L knockout and upregulates the expression of oxidative stress-induced genes involved in cell death. Furthermore, A4B17 outperformed the clinically approved antagonist enzalutamide in inhibiting cell proliferation and prostate tumor development in a mouse xenograft model. BAG1 inhibitors therefore offer unique opportunities for antagonizing AR action and prostate cancer growth.

5.
Int J Mol Sci ; 23(2)2022 Jan 16.
Article in English | MEDLINE | ID: mdl-35055142

ABSTRACT

Anti-neuroinflammatory treatment has gained importance in the search for pharmacological treatments of different neurological and psychiatric diseases, such as depression, schizophrenia, Parkinson's disease, and Alzheimer's disease. Clinical studies demonstrate a reduction of the mentioned diseases' symptoms after the administration of anti-inflammatory drugs. Novel coumarin derivates have been shown to elicit anti-neuroinflammatory effects via G-protein coupled receptor GPR55, with possibly reduced side-effects compared to the known anti-inflammatory drugs. In this study, we, therefore, evaluated the anti-inflammatory capacities of the two novel coumarin-based compounds, KIT C and KIT H, in human neuroblastoma cells and primary murine microglia. Both compounds reduced PGE2-concentrations likely via the inhibition of COX-2 synthesis in SK-N-SH cells but only KIT C decreased PGE2-levels in primary microglia. The examination of other pro- and anti-inflammatory parameters showed varying effects of both compounds. Therefore, the differences in the effects of KIT C and KIT H might be explained by functional selectivity as well as tissue- or cell-dependent expression and signal pathways coupled to GPR55. Understanding the role of chemical residues in functional selectivity and specific cell- and tissue-targeting might open new therapeutic options in pharmacological drug development and might improve the treatment of the mentioned diseases by intervening in an early step of their pathogenesis.


Subject(s)
Anti-Inflammatory Agents/chemical synthesis , Coumarins/chemical synthesis , Microglia/cytology , Neurons/cytology , Receptors, Cannabinoid/metabolism , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Coumarins/chemistry , Coumarins/pharmacology , Dinoprostone/metabolism , Humans , Mice , Microglia/drug effects , Microglia/metabolism , Neurons/drug effects , Neurons/metabolism , Organ Specificity , Primary Cell Culture
6.
Int J Mol Sci ; 22(21)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34769094

ABSTRACT

Oxidative stress is associated with different neurological and psychiatric diseases. Therefore, development of new pharmaceuticals targeting oxidative dysregulation might be a promising approach to treat these diseases. The G-protein coupled receptor 55 (GPR55) is broadly expressed in central nervous tissues and cells and is involved in the regulation of inflammatory and oxidative cell homeostasis. We have recently shown that coumarin-based compounds enfold inverse agonistic activities at GPR55 resulting in the inhibition of prostaglandin E2. However, the antioxidative effects mediated by GPR55 were not evaluated yet. Therefore, we investigated the antioxidative effects of two novel synthesized coumarin-based compounds, KIT C and KIT H, in primary mouse microglial and human neuronal SK-N-SK cells. KIT C and KIT H show antioxidative properties in SK-N-SH cells as well as in primary microglia. In GPR55-knockout SK-N-SH cells, the antioxidative effects are abolished, suggesting a GPR55-dependent antioxidative mechanism. Since inverse agonistic GPR55 activation in the brain seems to be associated with decreased oxidative stress, KIT C and KIT H possibly act as inverse agonists of GPR55 eliciting promising therapeutic options for oxidative stress related diseases.


Subject(s)
Coumarins/chemistry , Oxidative Stress/drug effects , Receptors, Cannabinoid/chemistry , Cell Line , Coumarins/pharmacology , Drug Evaluation, Preclinical , Drug Inverse Agonism , Humans , Primary Cell Culture
7.
Sci Rep ; 11(1): 20627, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34663887

ABSTRACT

Cnidarians are characterized by the possession of stinging organelles, called nematocysts, which they use for prey capture and defense. Nematocyst discharge is controlled by a mechanosensory apparatus with analogies to vertebrate hair cells. Members of the transient receptor potential (TRPN) ion channel family are supposed to be involved in the transduction of the mechanical stimulus. A small molecule screen was performed to identify compounds that affect nematocyst discharge in Hydra. We identified several [2.2]paracyclophanes that cause inhibition of nematocyst discharge in the low micro-molar range. Further structure-activity analyses within the compound class of [2.2]paracyclophanes showed common features that are required for the inhibitory activity of the [2.2]paracyclophane core motif. This study demonstrates that Hydra can serve as a model for small molecule screens targeting the mechanosensory apparatus in native tissues.


Subject(s)
Hydra/immunology , Nematocyst/drug effects , Nematocyst/physiology , Animals , Biomechanical Phenomena/drug effects , Biomechanical Phenomena/physiology , Cnidaria , Hydra/metabolism , Small Molecule Libraries/pharmacology , Transient Receptor Potential Channels/drug effects , Transient Receptor Potential Channels/physiology
8.
ACS Chem Biol ; 16(11): 2103-2108, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34506104

ABSTRACT

All current clinically approved androgen deprivation therapies for prostate cancer target the C-terminal ligand-binding domain of the androgen receptor (AR). However, the main transactivation function of the receptor is localized at the AR N-terminal domain (NTD). Targeting the AR NTD directly is a challenge because of its intrinsically disordered structure and the lack of pockets for drugs to bind. Here, we have taken an alternative approach using the cochaperone BAG1L, which interacts with the NTD, to develop a novel AR inhibitor. We describe the identification of 2-(4-fluorophenyl)-5-(trifluoromethyl)-1,3-benzothiazole (A4B17), a small molecule that inhibits BAG1L-AR NTD interaction, attenuates BAG1L-mediated AR NTD activity, downregulates AR target gene expression, and inhibits proliferation of AR-positive prostate cancer cells. This compound represents a prototype of AR antagonists that could be key in the development of future prostate cancer therapeutics.


Subject(s)
Androgen Receptor Antagonists/pharmacology , Antineoplastic Agents/pharmacology , Benzothiazoles/pharmacology , Prostatic Neoplasms/drug therapy , Receptors, Androgen/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , DNA-Binding Proteins/metabolism , Down-Regulation/drug effects , Humans , Male , Prostatic Neoplasms/metabolism , Protein Binding/drug effects , Protein Domains , Receptors, Androgen/chemistry , Transcription Factors/metabolism
9.
Beilstein J Org Chem ; 14: 515-522, 2018.
Article in English | MEDLINE | ID: mdl-29623112

ABSTRACT

In the presented study, dithi(ol)anylium tetrafluoroborates are added to α,ß-unsaturated ketones in a Michael-type reaction yielding diverse substituted ketene diothi(ol)anes. The reactions proceed at room temperature in 1 or 13 h without the need of further additives. The presented procedure is in particular useful for dithi(ol)anylium tetrafluoroborates without electron-withdrawing groups in α-position. This is advantageous with respect to previous approaches, which were limited to the use of ketene dithioacetals substituted with electron-withdrawing groups. Aiming for the systematic investigation of possible steric and electronic influences on the outcome of the reaction, various combinations of electrophiles and nucleophiles were used and the results of the reactions were compared based on the type of the used dithioacetal. The scope of the presented procedure is shown with four additional transformations including the use of additional electrophiles and nucleophiles, the use of a chiral auxiliary and subsequent reduction of selected products. Additionally, we extended the reaction to the synthesis of diene dithiolanes by addition of an ynone to α-alkyl or aryl-substitued dithiolanylium TFBs.

10.
ACS Med Chem Lett ; 8(9): 931-935, 2017 Sep 14.
Article in English | MEDLINE | ID: mdl-28947939

ABSTRACT

Due to the arising resistance of common drugs targeting the Hedgehog signaling pathway, the identification of new compound classes with inhibitory effect is urgently needed. We were able to identify S-alkylated 2-mercaptobenzoimidazoles as a new compound class that exhibits Hedgehog signaling activity in a low micromolar range. The scope of the 2-mercaptobenzoimidazole motif has been investigated by the syntheses of diverse derivatives, revealing that the elongation of the linker unit and the exchange of particular substitution patterns are tolerable with respect to the activity of the compound class.

11.
Org Lett ; 18(15): 3598-601, 2016 08 05.
Article in English | MEDLINE | ID: mdl-27399339

ABSTRACT

A solid supported procedure for the synthesis of benzoxazinones, dihydropyrazinones, quinoxalinones, and dihydrooxazinones using immobilized oxazolones in combination with difunctional nucleophiles as cleavage agent is presented. The scope of the novel method has been demonstrated through subsequent modification of the parent oxazolone scaffold on solid supports using conversions with electrophiles or CuAAC reactions to give functionalized pyrazin-2-ones. The described method allows the synthesis of the target heterocycles in good yields via three to five steps on solid phases with only one chromatographic purification step.

12.
Org Lett ; 16(4): 1112-5, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24517451

ABSTRACT

The conversion of dithianylium cations into α-azo ketene dithioacetals via addition of polymer-bound diazonium precursors is shown. This new procedure allows the synthesis of α-azo ketene dithioacetals in one step within 2-90 min at rt and yields highly pure compounds that do not have to be purified in most cases. The α-azo ketene dithioacetals obtained have been shown to be valuable intermediates for the synthesis of hydrazones, α-halogenated α-azo ketene dithioacetals, and azo-functionalized dienes.

SELECTION OF CITATIONS
SEARCH DETAIL
...