Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(8): 10856-10866, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38364302

ABSTRACT

A new, simple method for preparing substrates for photocatalytic applications under visible light is presented. It is based on the preparation of a dense array of gold nanoparticles (AuNPs) by thermal dewetting of a thin gold film followed by spin-coating of a thin TiO2 film prepared by sol-gel chemistry. The photocatalytic properties of these nanocomposite films are studied by surface-enhanced Raman spectroscopy (SERS) following the N-demethylation reaction of methylene blue as a model reaction. This approach shows that the semiconducting layer on the AuNPs can significantly increase the efficiency of the photoinduced reaction. The SERS study also illustrates the influence of parameters such as TiO2 thickness and position (on or under the AuNPs). Ultimately, this study emphasizes that the primary mechanism behind the N-demethylation reaction is both the increase in extinction and the improved electron transfer facilitated by the semiconducting layer. On the other hand, exclusive reliance on photothermal effects is ruled out.

2.
ACS Nano ; 17(3): 1906-1915, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36513374

ABSTRACT

Almost regular hexagonal arrays of microscopic pyramids consisting of soot nanoparticles are formed on the surface of graphitized hollow filaments, which are resistively heated to ∼1800-2400 °C under an Ar atmosphere containing trace amounts of oxygen (∼300 ppm). At higher temperatures (T > 2300 °C, approximately) the soot particles are represented mainly by multishell carbon nano-onions. The height and width of the pyramids are strongly dependent on the temperature of the resistive heating, diminishing from 5 to 10 µm at T ≈ 1800 °C to ∼1 µm at 2300-2400 °C. Quasi-hexagonal arrays of the micropyramids are organized in the convex "craters" on the surface of the microtubes, which grow with the time of the thermal treatment. The pyramids always point normally to the surface of the craters, except at the boundaries between the craters, where the normal direction is not well-defined. The pyramids are soft and can be easily destroyed by touching them but can be hardened by heating them under an oxygen-free atmosphere. The pyramids are observed only on the exterior surface of the microtubes, not on their inner surface. This suggests that the thermophoretic force generated by a strong temperature gradient near the external surface of the tubes may be the cause of the micropyramid formation. Electrostatic charging of the soot nanoparticles due to thermionic emission may also be relevant to this phenomenon. The micropyramids can function as field emission point sources, as demonstrated with the use of a micronanoprobing station, mounted in a scanning electron microscope.

3.
ACS Appl Mater Interfaces ; 13(41): 49279-49287, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34613692

ABSTRACT

Near-infrared (NIR) laser annealing is used to write conductive patterns on the surface of polypropylene/multi-walled carbon nanotube nanocomposite (PP/MWCNT) plates. Before irradiation, the surface of the nanocomposite is not conductive due to the partial alignment of the MWCNT, which occurs during injection molding. We observe a significant decrease in the surface sheet resistance using NIR laser irradiation, which we explain by a randomization of the orientation of MWCNTs in the PP matrix melt by NIR laser irradiation. After only 5 s of irradiation, the sheet resistance of PP/MWCNTs, annealed with a laser at a power density of 7 W/cm2, decreases by more than 4 decades from ∼100 MΩ/sq to ∼1 kΩ/sq. Polarized Raman, TEM, and SEM are used to investigate the changes in the sheet resistance and confirm the physico-chemical processes involved. This allows direct writing of conductive patterns using a NIR laser on the surface of nanocomposite polymer substrates, with the advantages of a fast, easy, and low-energy consumption process.

4.
Polymers (Basel) ; 12(8)2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32824776

ABSTRACT

Poly(lactic-co-glycolic acid) (PLGA) has been used in the field of tissue engineering as a scaffold due to its good biocompatibility, biodegradability and mechanical strength. With the aim to explore the degradability of PLGA electrospun nonwoven structures for oral mucosa tissue engineering applications, non-irradiated and gamma irradiated nonwovens were immersed in three different solutions, in which simulated body fluid (SBF) and artificial saliva are important for future oral mucosa tissue engineering. The nonwovens were immersed for 7, 15 and 30 days in SBF, culture media (DMEM) and artificial saliva at 37 °C. Before immersion in the solutions, the dosage of 15 kGy was applied for sterilization in one assay and compared with non-irradiated samples at the same timepoints. Samples were characterized using different techniques such as scanning electron microscopy (SEM), differential scanning calorimetric (DSC) and gel permeation chromatography (GPC) to evaluate the nonwoven degradation and Fourier-transform infrared spectroscopy (FTIR) to evaluate the chain scissions. Our results showed that PLGA nonwovens were constituted by semicrystalline fibers with moderate degradation properties up to thirty days. The non-irradiated samples exhibited slower kinetics of degradation than irradiated nonwovens. For immersion times longer than 7 days in the three different solutions, the mean diameter of irradiated fibers stayed in the same range, but significantly different from the control sample. On non-irradiated samples, the degradation kinetics was slower and the plateau in the diameter value was only attained after 30 days of immersion in the fluids. Plasticization (fluid absorption into the fiber structure) occurred in the bulk material, as confirmed by a decrease in Tg observed by DSC analyses of non-irradiated and irradiated nonwovens, in comparison with the respective controls. In addition, artificial saliva showed a higher capacity of influencing PLGA crystallization than SBF and DMEM. FTIR analyses showed typical PLGA chemical functional groups changes. These results will be important for future application of those PLGA electrospun nonwovens for oral mucosa regeneration.

5.
J Control Release ; 233: 39-47, 2016 07 10.
Article in English | MEDLINE | ID: mdl-27179634

ABSTRACT

In this article we present a relevant strategy for a non-trivial time-programmed release of water-soluble macromolecules from biocompatible µ-containers. The system is based on self-scrolled chitosan acetate (CA) fibers, encapsulated in a poly(dimethylsiloxane) matrix. Mass transfer between a fiber and the external environment takes place via the only opened extremity of the fiber. Fluoroscein isocyanate dextran (FID) is initially deposited at the inner surface of the CA fiber according to a programmed pattern. The FID molecules became mobile after the arriving of the swelling front, which propagates along the fiber's axis upon the immersion of the system in aqueous solution. Diffusion of the macromolecules into the environment is enabled by the open-tube geometry of the swollen part of the fiber, while a programmed kinetics of the drug release is due to patterning of the polymer film prior to rolling. The release of the macromolecules can be retarded by a few hours according to the placement of the FID spot with respect to the fibers orifice. A pulsatile release kinetics is demonstrated for a discrete pattern. A few millimeter spacing of the FID spots results in a few hours time interval between the release impulses. Random walk model is plugged in the effective diffusion coefficient for Fick's law and the release kinetics are simulated.


Subject(s)
Acetates/chemistry , Chitosan/chemistry , Dextrans/chemistry , Drug Delivery Systems , Fluorescein-5-isothiocyanate/analogs & derivatives , Fluorescent Dyes/chemistry , Delayed-Action Preparations/chemistry , Drug Liberation , Fluorescein-5-isothiocyanate/chemistry , Kinetics , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...