Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2817: 177-220, 2024.
Article in English | MEDLINE | ID: mdl-38907155

ABSTRACT

Mass-spectrometry (MS)-based single-cell proteomics (SCP) explores cellular heterogeneity by focusing on the functional effectors of the cells-proteins. However, extracting meaningful biological information from MS data is far from trivial, especially with single cells. Currently, data analysis workflows are substantially different from one research team to another. Moreover, it is difficult to evaluate pipelines as ground truths are missing. Our team has developed the R/Bioconductor package called scp to provide a standardized framework for SCP data analysis. It relies on the widely used QFeatures and SingleCellExperiment data structures. In addition, we used a design containing cell lines mixed in known proportions to generate controlled variability for data analysis benchmarking. In this chapter, we provide a flexible data analysis protocol for SCP data using the scp package together with comprehensive explanations at each step of the processing. Our main steps are quality control on the feature and cell level, aggregation of the raw data into peptides and proteins, normalization, and batch correction. We validate our workflow using our ground truth data set. We illustrate how to use this modular, standardized framework and highlight some crucial steps.


Subject(s)
Mass Spectrometry , Proteomics , Single-Cell Analysis , Software , Workflow , Proteomics/methods , Proteomics/standards , Single-Cell Analysis/methods , Mass Spectrometry/methods , Humans , Computational Biology/methods , Proteome/analysis , Data Analysis
2.
J Proteome Res ; 21(11): 2815-2826, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36287219

ABSTRACT

In recent years, the concept of cell heterogeneity in biology has gained increasing attention, concomitant with a push toward technologies capable of resolving such biological complexity at the molecular level. For single-cell proteomics using Mass Spectrometry (scMS) and low-input proteomics experiments, the sensitivity of an orbitrap mass analyzer can sometimes be limiting. Therefore, low-input proteomics and scMS could benefit from linear ion traps, which provide faster scanning speeds and higher sensitivity than an orbitrap mass analyzer, however at the cost of resolution. We optimized an acquisition method that combines the orbitrap and linear ion trap, as implemented on a tribrid instrument, while taking advantage of the high-field asymmetric waveform ion mobility spectrometry (FAIMS) pro interface, with a prime focus on low-input applications. First, we compared the performance of orbitrap- versus linear ion trap mass analyzers. Subsequently, we optimized critical method parameters for low-input measurement by data-independent acquisition on the linear ion trap mass analyzer. We conclude that linear ion traps mass analyzers combined with FAIMS and Whisper flow chromatography are well-tailored for low-input proteomics experiments, and can simultaneously increase the throughput and sensitivity of large-scale proteomics experiments where limited material is available, such as clinical samples and cellular subpopulations.


Subject(s)
Peptides , Proteomics , Proteomics/methods , Peptides/analysis , Mass Spectrometry/methods , Ion Mobility Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...