Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Cell Neurosci ; 16: 936979, 2022.
Article in English | MEDLINE | ID: mdl-35846564

ABSTRACT

Early Life Stress (ELS) can critically influence brain development and future stress responses and thus represents an important risk factor for mental health and disease. Neuropeptide Y (NPY) is discussed to be a key mediator of resilient vs. vulnerable adaptations and specifically, the NPY-Y2 receptor (Y2R) may be involved in the pathophysiology of depression due to its negative regulation of NPY-release. The present study addressed the hypotheses that ELS and adult stress (AS) affect the expression of hippocampal Y2R and that exposure to ELS induces an epigenetically mediated programming effect towards a consecutive stress exposure in adulthood. The specific aims were to investigate if (i) ELS or AS as single stressors induce changes in Y2 receptor gene expression in the hippocampus, (ii) the predicted Y2R changes are epigenetically mediated via promoter-specific DNA-methylation, (iii) the ELS-induced epigenetic changes exert a programming effect on Y2R gene expression changes in response to AS, and finally (iv) if the predicted alterations are sex-specific. Animals were assigned to the following experimental groups: (1) non-stressed controls (CON), (2) only ELS exposure (ELS), (3) only adult stress exposure (CON+AS), and (4) exposure to ELS followed by AS (ELS+AS). Using repeated maternal separation in mice as an ELS and swim stress as an AS we found that both stressors affected Y2R gene expression in the hippocampus of male mice but not in females. Specifically, upregulated expression was found in the CON+AS group. In addition, exposure to both stressors ELS+AS significantly reduced Y2R gene expression when compared to CON+AS. The changes in Y2R expression were paralleled by altered DNA-methylation patterns at the Y2R promoter, specifically, a decrease in mean DNA-methylation in the CON+AS males compared to the non-AS exposed groups and an increase in the ELS+AS males compared to the CON+AS males. Also, a strong negative correlation of mean DNA-methylation with Y2R expression was found. Detailed CpG-site-specific analysis of DNA-methylation revealed that ELS induced increased DNA-methylation only at specific CpG-sites within the Y2R promoter. It is tempting to speculate that these ELS-induced CpG-site-specific changes represent a "buffering" programming effect against elevations of Y2R expression induced by AS.

2.
Oxid Med Cell Longev ; 2020: 4309605, 2020.
Article in English | MEDLINE | ID: mdl-32082478

ABSTRACT

We recently showed that blunt chest trauma reduced the expression of the myocardial oxytocin receptor (Oxtr), which was further aggravated by genetic deletion of the H2S-producing enzyme cystathionine γ-lyase (CSE). Exogenous H2S supplementation restored myocardial Oxtr expression under these conditions. Early life stress (ELS) is a risk factor for cardiovascular disease by affecting vascular and heart structures. Therefore, we tested the hypotheses that (i) ELS affects cardiac Oxtr and CSE expressions and (ii) Oxtr and CSE expression patterns depend on the duration of stress exposure. Thus, two stress paradigms were compared: long- and short-term separation stress (LTSS and STSS, respectively). Cardiac Oxtr expression was differentially affected by the two stress paradigms with a significant reduction after LTSS and a significant increase after STSS. CSE expression, which was significantly reduced in Oxtr-/- knockout hearts, was downregulated and directly related to Oxtr expression in LTSS hearts (r = 0.657, p = 0.012). In contrast, CSE expression was not related to Oxtr upregulation in STSS. Plasma Oxt levels were not affected by either ELS paradigm. The coincidence of LTSS-induced reduction of cardiac Oxtr and reduced CSE expression may suggest a novel pathophysiological link between early life adversities and increased risk for the development of cardiovascular disorders in adulthood.


Subject(s)
Cystathionine gamma-Lyase/metabolism , Oxytocin/blood , Receptors, Oxytocin/metabolism , Animals , Female , Heterozygote , Homozygote , Male , Maternal Deprivation , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/metabolism , Oxytocin/metabolism , Up-Regulation
3.
Brain Struct Funct ; 223(2): 713-725, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28918435

ABSTRACT

Positive and negative feedback learning is essential to optimize behavioral performance. We used the two-way active avoidance (TWA) task as an experimental paradigm for negative feedback learning with the aim to test the hypothesis that neuronal ensembles activate the activity-regulated cytoskeletal (Arc/Arg3.1) protein during different phases of avoidance learning and during retrieval. A variety of studies in humans and other animals revealed that the ability of aversive feedback learning emerges postnatally. Our previous findings demonstrated that rats, which as infants are not capable to learn an active avoidance strategy, show improved avoidance learning as adults. Based on these findings, we further tested the hypothesis that specific neuronal ensembles are "tagged" during infant TWA training and then reactivated during adult re-exposure to the same learning task. Using cellular imaging by immunocytochemical detection of Arc/Arg3.1, we observed that, compared to the untrained control group, (1) only in the dentate gyrus the density of Arc/Arg3.1-expressing neurons was elevated during the acquisition phase of TWA learning, and (2) this increase in Arc/Arg3.1-expressing neurons was not specific for the TWA learning task. With respect to the effects of infant TWA training we found that compared to the naïve non-pretrained group (a) the infant pretraining group displayed a higher density of Arc/Arg3.1-expressing neurons in the anterior cingulate cortex during acquisition on training day 1, and (b) the infant pretraining group displayed elevated density of Arc/Arg3.1-expressing neurons in the dentate gyrus during retrieval on test day 5. Correlation analysis for the acquisition phase revealed for the ACd that the animals which showed the highest number of avoidances and the fastest escape latencies displayed the highest density of Arc/Arg3.1-expressing neurons. Taken together, we are the first to use the synaptic plasticity protein Arc/Arg3.1 to label neuronal ensembles which are involved in different phases of active avoidance learning and whose activity patterns are changing in response to previous learning experience during infancy. Our results indicate (1) that, despite the inability to learn an active avoidance response in infancy, lasting memory traces are formed encoding the subtasks that are learned in infancy (e.g., the association of the CS and UCS, escape strategy), which are encoded in the infant brain by neuronal ensembles, which alter their synaptic connectivity via activation of specific synaptic plasticity proteins such as Arc/Arg3.1 and Egr1, and (2) that during adult training these memories can be retrieved by reactivating these neuronal ensembles and their synaptic circuits and thereby accelerate learning.


Subject(s)
Avoidance Learning/physiology , Cytoskeletal Proteins/metabolism , Limbic System/cytology , Nerve Tissue Proteins/metabolism , Neural Pathways/physiology , Neurons/metabolism , Prefrontal Cortex/cytology , Analysis of Variance , Animals , Animals, Newborn , Conditioning, Classical/physiology , Correlation of Data , Female , Male , Mental Recall/physiology , Rats
4.
Brain Struct Funct ; 222(8): 3639-3651, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28391399

ABSTRACT

Both positive feedback learning and negative feedback learning are essential for adapting and optimizing behavioral performance. There is increasing evidence in humans and animals that the ability of negative feedback learning emerges postnatally. Our work in rats, using a two-way active avoidance task (TWA) as an experimental paradigm for negative feedback learning, revealed that medial and lateral prefrontal regions of infant rats undergo dramatic synaptic reorganization during avoidance training, resulting in improved avoidance learning in adulthood. The aim of this study was to identify changes of cellular activation patterns during the course of training and in relation to infant pretraining. We applied a quantitative cellular imaging technique using the immunocytochemical detection of the activity marker early growth response protein 1 (Egr1) as a candidate contributing to learning-induced synaptic plasticity. We found region-specific cellular activity patterns, which indicate that during the acquisition phase, Egr1 expression is specifically elevated in cellular ensembles of the orbitofrontal, dorsal anterior cingulate and hippocampal CA1 region. During memory retrieval Egr1 expression is elevated in cellular ensembles of the dentate gyrus. Moreover, we, for the first time, show here that TWA training during infancy alters adult learning- and memory-related patterns of Egr1 expression in these brain regions. It is tempting to speculate that during infant learning, specific Egr1-expressing cellular ensembles are "tagged" representing long-term memory formation, and that these cell ensembles may be reactivated during adult learning.


Subject(s)
Avoidance Learning/physiology , Early Growth Response Protein 1/metabolism , Limbic System/physiology , Neuronal Plasticity , Neurons/physiology , Prefrontal Cortex/physiology , Animals , Cell Count , Female , Memory/physiology , Neural Pathways/physiology , Rats
5.
Mol Neurobiol ; 54(6): 4813-4819, 2017 08.
Article in English | MEDLINE | ID: mdl-27525673

ABSTRACT

Chronic stress (CS) during early life represents a major risk factor for the development of mental disorders, including depression. According to the Two/Multiple-Hit hypothesis, the etiology of neuropsychiatric disorders usually involves multiple stressors experienced subsequently during different phases of life. However, the molecular and cellular mechanisms modulating neuronal and behavioral changes induced by multiple stress experiences are just poorly understood. Since the oxytocinergic and vasopressinergic systems are neuroendocrine modulators involved in environmentally driven adaptations of stress sensitivity we hypothesized that postnatal CS programs oxytocinergic and vasopressinergic receptor expression changes in response to a second stress exposure in young adulthood. First we investigated if postnatal CS (maternal separation + social isolation) induces depressive-like behavior and alters oxytocin receptor (OxtR) and arginine vasopressin receptor type 1a (AvpR1a) gene expression in the hippocampus (HC) of male mice and (2) if a second single stressor (forced swimming, FS) in young adulthood affects gene expression of OxtR and AvpR1a at adulthood dependent on CS pre-experience. We found that postnatal CS induced depressive-like behavior and enhanced AvpR1a expression in HC at young adulthood. Moreover, in line with our hypothesis, only combined stress exposure (CS + FS), but not CS or FS alone, resulted in increased gene expression of OxtR in HC at adulthood. In contrast, AvpR1a expression was decreased in both adult FS and CS + FS animals. Overall, our results provide evidence that CS programs neuroendocrine systems and thereby influences stress responses in later life periods.


Subject(s)
Aging/genetics , Behavior, Animal , Depression/etiology , Depression/genetics , Gene Expression Regulation , Receptors, Oxytocin/genetics , Receptors, Vasopressin/genetics , Stress, Psychological/complications , Animals , Animals, Newborn , Choice Behavior , Chronic Disease , Hippocampus/metabolism , Male , Maternal Deprivation , Mice, Inbred C57BL , Receptors, Oxytocin/metabolism , Receptors, Vasopressin/metabolism , Social Isolation , Swimming
6.
J Neural Transm (Vienna) ; 123(9): 1037-52, 2016 09.
Article in English | MEDLINE | ID: mdl-27169537

ABSTRACT

The view that the functional maturation of the brain is the result of an environmentally driven adaptation of genetically preprogrammed neuronal networks is an important current concept in developmental neuroscience and psychology. This hypothesis proposes that early traumatic experiences or early life stress (ELS) as a negative environmental experience provide a major risk factor for the development of dysfunctional brain circuits and as a consequence for the emergence of behavioral dysfunctions and mental disorders in later life periods. This view is supported by an increasing number of clinical as well as experimental animal studies revealing that early life traumas can induce functional 'scars' in the brain, especially in brain circuits, which are essential for emotional control, learning, and memory functions. Such gene × environment interactions are modulated by specific epigenetic mechanisms, which are suggested to be the key factors of transgenerational epigenetic inheritance. Indeed, there is increasing evidence for inter- and transgenerational cycles of environmentally driven neuronal and behavioral adaptations mediated by epigenetic mechanisms. Finally, recent concepts postulate that, dependent on type, time point, and duration of ELS exposure, also positive functional adaptations may occur in the relevant brain pathways, leading to better stress coping and resilience against adversities later in life.


Subject(s)
Brain/pathology , Epigenesis, Genetic/physiology , Inheritance Patterns , Prenatal Exposure Delayed Effects , Stress, Psychological , Animals , Female , Humans , Pregnancy , Stress, Psychological/genetics , Stress, Psychological/pathology , Stress, Psychological/physiopathology
7.
Brain Struct Funct ; 221(1): 679-85, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25239865

ABSTRACT

The present study in juvenile rats investigated a "two-hit model" to test the impact of prenatal stress exposure ("first hit") on the regulation of the synaptic plasticity immediate early genes Arc and Egr1 in response to a second neonatal stressor ("second hit") in a sex-specific manner. Three stress-exposed animal groups were compared at the age of 21 days in relation to unstressed controls (CON): preS animals were exposed to various unpredictable stressors during the last gestational trimester; postS animals were exposed to 45 min restraint stress at postnatal day 21, pre/postS animals were exposed to a combination of pre- and postnatal stress as described for the two previous groups. The postS and pre/postS groups were killed 2 h after exposure to the postnatal stressor, males and females were separately analyzed. In line with our hypothesis we detected sex-specific stress sensitivity for both analyzed proteins. Males did not show any significant changes in Arc expression irrespective of the stress condition. In contrast, females, which had been pre-exposed to prenatal stress, displayed an "amplified" Arc upregulation in response to postnatal stress (pre/postS group) compared to unstressed controls, which may reflect a "sensitization" effect of prenatal stress. For Egr1, the females did not show any stress-induced regulation irrespective of the stress condition, whereas in males, which were pre-exposed to prenatal stress, we observed a "protective" effect of prenatal stress on postnatal stress-induced downregulation of Egr1 expression (pre/postS group), which may indicate that prenatal stress exposure may induce "resilience".


Subject(s)
Cytoskeletal Proteins/metabolism , Early Growth Response Protein 1/metabolism , Nerve Tissue Proteins/metabolism , Neuronal Plasticity , Prenatal Exposure Delayed Effects , Stress, Psychological/metabolism , Synapses/metabolism , Animals , Animals, Newborn , Female , Gestational Age , Immunohistochemistry , Male , Pregnancy , Rats, Wistar , Restraint, Physical , Sex Factors , Stress, Psychological/physiopathology
8.
Front Neurosci ; 8: 11, 2014.
Article in English | MEDLINE | ID: mdl-24550772

ABSTRACT

Environmental influences such as perinatal stress have been shown to program the developing organism to adapt brain and behavioral functions to cope with daily life challenges. Evidence is now accumulating that the specific and individual effects of early life adversity on the functional development of brain and behavior emerge as a function of the type, intensity, timing and the duration of the adverse environment, and that early life stress (ELS) is a major risk factor for developing behavioral dysfunctions and mental disorders. Results from clinical as well as experimental studies in animal models support the hypothesis that ELS can induce functional "scars" in prefrontal and limbic brain areas, regions that are essential for emotional control, learning and memory functions. On the other hand, the concept of "stress inoculation" is emerging from more recent research, which revealed positive functional adaptations in response to ELS resulting in resilience against stress and other adversities later in life. Moreover, recent studies indicate that early life experiences and the resulting behavioral consequences can be transmitted to the next generation, leading to a transgenerational cycle of adverse or positive adaptations of brain function and behavior. In this review we propose a unifying view of stress vulnerability and resilience by connecting genetic predisposition and programming sensitivity to the context of experience-expectancy and transgenerational epigenetic traits. The adaptive maturation of stress responsive neural and endocrine systems requires environmental challenges to optimize their functions. Repeated environmental challenges can be viewed within the framework of the match/mismatch hypothesis, the outcome, psychopathology or resilience, depends on the respective predisposition and on the context later in life.

9.
Hum Mol Genet ; 21(5): 1025-36, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22082831

ABSTRACT

The human SLC4A5 gene has been identified as a hypertension susceptibility gene based on the association of single nucleotide polymorphisms with blood pressure (BP) levels and hypertension status. The biochemical basis of this association is unknown particularly since no single gene variant was linked to hypertension in humans. SLC4A5 (NBCe2, NBC4) is expressed in the collecting duct of the kidney and acts as an electrogenic ion-transporter that transports sodium and bicarbonate with a 1:2 or 1:3 stoichiometry allowing bicarbonate reabsorption with relatively minor concurrent sodium uptake. We have mutated the Slc4a5 gene in mice, which caused a persistent increase in systolic and diastolic BP. Slc4a5 mutant mice also displayed a compensated metabolic acidosis and hyporeninemic hypoaldosteronism. Analysis of kidney physiology revealed elevated fluid intake and urine excretion and increased glomerular filtration rate. Transcriptome analysis uncovers possible compensatory mechanisms induced by SLC4A5 mutation, including upregulation of SLC4A7 and pendrin as well as molecular mechanisms associated with hypertension. Induction of metabolic alkalosis eliminated the BP difference between wild-type and Slc4a5 mutant mice. We conclude that the impairment of the function of SLC4A5 favors development of a hypertensive state. We reason that the loss of sodium-sparing bicarbonate reabsorption by SLC4A5 initiates a regulatory cascade consisting of compensatory bicarbonate reabsorption via other sodium-bicarbonate transporters (e.g. SLC4A7) at the expense of an increased sodium uptake. This will ultimately raise BP and cause hypoaldosteronism, thus providing a mechanistic explanation for the linkage of the SLC4A5 locus to hypertension in humans.


Subject(s)
Acidosis, Renal Tubular/genetics , Gene Expression Regulation , Hypertension/genetics , Kidney Tubules/metabolism , Kidney/metabolism , Sodium-Bicarbonate Symporters/genetics , Sodium-Bicarbonate Symporters/metabolism , Acid-Base Equilibrium , Acidosis, Renal Tubular/metabolism , Acidosis, Renal Tubular/physiopathology , Aldosterone/blood , Animals , Atrial Natriuretic Factor/blood , Blood , Blood Chemical Analysis , Blood Pressure , Glomerular Filtration Rate , Hydrogen-Ion Concentration , Hypertension/metabolism , Hypertension/physiopathology , In Situ Hybridization , Male , Mice , Mutation , Sequence Deletion , Sodium/metabolism , Sodium Bicarbonate/metabolism , Urination , Urine/chemistry
10.
J Biol Chem ; 285(19): 14467-74, 2010 May 07.
Article in English | MEDLINE | ID: mdl-20185830

ABSTRACT

Maintenance of ion concentration gradients is essential for the function of many organs, including the kidney, the cornea, and the inner ear. Ion concentrations and fluid content in the cornea are regulated by endothelial cells that separate the collagenous avascular corneal stroma from the anterior eye chamber. Failure to maintain correct ion concentrations leads to swelling and destruction of the cornea. In the inner ear, the stria vascularis is responsible for generating proper ion concentrations in the endolymph, which is essential for hearing. Mutations of SLC4A11 in humans lead to syndromes associated with corneal dystrophy and perceptive deafness. The molecular mechanisms underlying these symptoms are poorly understood, impeding therapeutic interventions. The ion transporter SLC4A11 mediates sodium-dependent transport of borate as well as flux of sodium and hydroxyl ions in vitro. Here, we show that SLC4A11 is expressed in the endothelial cells of the cornea where it prevents severe morphological changes of the cornea caused by increased sodium chloride concentrations in the stroma. In the inner ear, SLC4A11 is located in fibrocytes underlying the stria vascularis. Loss of SLC4A11 leads to morphological changes in the fibrocytes and deafness. We demonstrate that SLC4A11 is essential for the generation of the endocochlear potential but not for regulation of potassium concentrations in the endolymph. In the kidney, SLC4A11 is expressed in the thin descending limb of Henle loop. SLC4A11 is essential for urinary concentration, suggesting that SLC4A11 participates in the countercurrent multiplication that concentrates urine in the kidney medulla.


Subject(s)
Anion Transport Proteins/physiology , Deafness/prevention & control , Fuchs' Endothelial Dystrophy/prevention & control , Osmosis , Polyuria/prevention & control , Sodium Chloride/metabolism , Symporters/physiology , Animals , Deafness/metabolism , Ear, Inner/metabolism , Ear, Inner/pathology , Endolymph/metabolism , Female , Fuchs' Endothelial Dystrophy/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Polyuria/metabolism , Potassium/metabolism , Subcellular Fractions
11.
J Biol Chem ; 283(36): 24729-37, 2008 Sep 05.
Article in English | MEDLINE | ID: mdl-18562324

ABSTRACT

SLC5A8 is a member of the sodium/glucose cotransporter family. It has been proposed that SLC5A8 might act as an apical iodide transporter in the thyroid follicular cells or as a transporter of short chain monocarboxylates. We have directly addressed the functional role of SLC5A8 in vivo by generation of SLC5A8 mutant mice. We found that SLC5A8 is responsible for the re-absorption of lactate at the apical membrane of the kidney proximal tubules and of serous salivary gland ducts. In addition, SLC5A8 mediated the uptake of lactate into colonocytes under physiological conditions. We did not find any evidence of SLC5A8 being essential for the apical iodide transport in the thyroid gland, even if the ion-cotransporter SLC26A4, causing the human Pendred syndrome, is missing. Because SLC5A8 is transcriptionally silenced in many tumors, it has been proposed that SLC5A8-mediated transport of butyrate suppresses tumor formation. Treatment of Slc5a8(-/-) mice with carcinogens and breeding to the Apc(min) mouse line did not reveal a higher incidence of tumor formation. We conclude that SLC5A8 is instrumental in preventing lactaturia and loss of sodium-dependent uptake of lactate in the colon but does not have any apparent role in the prevention of tumor formation and growth.


Subject(s)
Cation Transport Proteins/metabolism , Colon/metabolism , Kidney Diseases/urine , Lactic Acid/urine , Sodium/metabolism , Animals , Butyrates/toxicity , Carcinogens/toxicity , Cation Transport Proteins/genetics , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Colon/pathology , Intestinal Absorption/drug effects , Intestinal Absorption/genetics , Kidney Diseases/genetics , Kidney Diseases/pathology , Mice , Mice, Knockout , Monocarboxylic Acid Transporters , Neoplasms, Experimental/chemically induced , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...