Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 7590, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29765156

ABSTRACT

γδ T cells have been implicated in inflammatory diseases as an important link between the innate and adaptive immune responses, however, their role in inflammatory arthritis remain unclear. To define the contribution of γδ T cells in the pathogenesis of inflammatory arthritis, we performed gene transfer of IL-23 in B10.RIII mice to establish joint inflammation in the presence or absence of γδ T cells. We demonstrated that γδ T cell blockade has a protective effect on arthritis incidence and severity by preventing neutrophil accumulation in the blood, spleen and bone marrow as well as by reducing neutrophil infiltration into the joints. Furthermore, our data demonstrate that absence of γδ T cells was associated with an increase of IL-27 levels produced by neutrophils and dendritic cells, and systemic IL-27 expression also prevents IL-23-induced inflammatory arthritis and limits neutrophil expansion. Collectively our findings reveal an immunomodulatory effect of γδ T cells on neutrophils associated with IL-27 synthesis and secretion and indicate a novel link between IL-27 and the modulation of γδ T cells and neutrophils that can be targeted in the treatment of inflammatory arthritis.


Subject(s)
Arthritis, Experimental/immunology , Interleukin-27/metabolism , Neutrophils/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Animals , Arthritis, Experimental/genetics , Bone Marrow/immunology , Interleukin-23/genetics , Male , Mice , Neutrophil Infiltration , Spleen/immunology
2.
J Immunol ; 200(2): 749-757, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29246953

ABSTRACT

In inflammatory arthritis, the dysregulation of osteoclast activity by proinflammatory cytokines, including TNF, interferes with bone remodeling during inflammation through Ca2+-dependent mechanisms causing pathological bone loss. Ca2+-dependent CREB/c-fos activation via Ca2+-calmodulin kinase IV (CaMKIV) induces transcriptional regulation of osteoclast-specific genes via NFATc1, which facilitate bone resorption. In leukocytes, Ca2+ regulation of NFAT-dependent gene expression oftentimes involves the activity of the Ca2+-activated K+ channel KCa3.1. In this study, we evaluate KCa3.1 as a modulator of Ca2+-induced NFAT-dependent osteoclast differentiation in inflammatory bone loss. Microarray analysis of receptor activator of NF-κB ligand (RANKL)-activated murine bone marrow macrophage (BMM) cultures revealed unique upregulation of KCa3.1 during osteoclastogenesis. The expression of KCa3.1 in vivo was confirmed by immunofluorescence staining on multinucleated cells at the bone surface of inflamed mouse joints. Experiments on in vitro BMM cultures revealed that KCa3.1-/- and TRAM-34 treatment significantly reduced the expression of osteoclast-specific genes (p < 0.05) alongside decreased osteoclast formation (p < 0.0001) in inflammatory (RANKL+TNF) and noninflammatory (RANKL) conditions. In particular, live cell Ca2+ imaging and Western blot analysis showed that TRAM-34 pretreatment decreased transient RANKL-induced Ca2+ amplitudes in BMMs by ∼50% (p < 0.0001) and prevented phosphorylation of CaMKIV. KCa3.1-/- reduced RANKL+/-TNF-stimulated phosphorylation of CREB and expression of c-fos in BMMs (p < 0.01), culminating in decreased NFATc1 protein expression and transcriptional activity (p < 0.01). These data indicate that KCa3.1 regulates Ca2+-dependent NFATc1 expression via CaMKIV/CREB during inflammatory osteoclastogenesis in the presence of TNF, corroborating its role as a target candidate for the treatment of bone erosion in inflammatory arthritis.


Subject(s)
Bone Resorption/genetics , Bone Resorption/metabolism , Calcium/metabolism , Gene Expression Regulation , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , NFATC Transcription Factors/genetics , Osteoclasts/metabolism , Animals , CREB-Binding Protein/metabolism , Cell Differentiation , Cells, Cultured , Mice , Mice, Knockout , NFATC Transcription Factors/metabolism , Osteoclasts/cytology , Protein Binding , Proto-Oncogene Proteins c-fos/metabolism , RANK Ligand/metabolism
3.
J Immunol ; 198(1): 452-460, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27895169

ABSTRACT

IL-23 activates the synthesis and production of leukotriene B4 (LTB4) in myeloid cells, which modulate inflammatory arthritis. In this study we investigated the role of LTB4 and its receptor LTB4R1 (BLT1) in synovial inflammation and osteoclast differentiation. Specifically, we used IL-23 in vivo gene transfer to induce arthritis in mice and showed that elevated serum LTB4 and synovial expression of 5-lipoxygenase correlated with increased disease severity by histological evaluation and paw swelling compared with GFP gene transfer controls. To further investigate the effect of the LTB4 pathway in bone loss, we performed osteoclast differentiation assays by stimulating with M-CSF and receptor activator of NF-κB ligand bone marrow cells derived from BLT1+/+ and/or BLT1-/- mice and used quantitative PCR for gene expression analysis in terminally differentiated osteoclasts. Deficiency in BLT1 resulted in the upregulation of osteoclast-related genes and an increase in the formation of giant, multinucleated TRAP+ cells capable of F-actin ring formation. Additionally, BLT1 deficiency showed an increase of phosphorylated NF-κB and phosphorylated IκB levels in osteoclasts. We also performed real-time calcium imaging to study the effect of BLT1 deficiency in receptor activator of NF-κ-B ligand-induced activation of intracellular calcium flux in vitro. Our data show that LTB4 and its receptor BLT1 exacerbate synovial inflammation in vivo and bone resorption in vitro, suggesting that LTB4 and BLT1 could be effectively targeted for the treatment of musculoskeletal diseases.


Subject(s)
Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/metabolism , Leukotriene B4/metabolism , Osteogenesis/physiology , Receptors, Leukotriene B4/metabolism , Animals , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/pathology , Blotting, Western , Flow Cytometry , Immunohistochemistry , Inflammation/metabolism , Inflammation/pathology , Interleukin-23/immunology , Male , Mice , Mice, Knockout , NF-kappa B/metabolism , Oligonucleotide Array Sequence Analysis , Osteoclasts/metabolism , Real-Time Polymerase Chain Reaction , Synovial Membrane/metabolism , Synovial Membrane/pathology , Transcriptome
4.
Glia ; 65(1): 106-121, 2017 01.
Article in English | MEDLINE | ID: mdl-27696527

ABSTRACT

Microglia are highly plastic cells that can assume different phenotypes in response to microenvironmental signals. Lipopolysaccharide (LPS) and interferon-γ (IFN-γ) promote differentiation into classically activated M1-like microglia, which produce high levels of pro-inflammatory cytokines and nitric oxide and are thought to contribute to neurological damage in ischemic stroke and Alzheimer's disease. IL-4 in contrast induces a phenotype associated with anti-inflammatory effects and tissue repair. We here investigated whether these microglia subsets vary in their K+ channel expression by differentiating neonatal mouse microglia into M(LPS) and M(IL-4) microglia and studying their K+ channel expression by whole-cell patch-clamp, quantitative PCR and immunohistochemistry. We identified three major types of K+ channels based on their biophysical and pharmacological fingerprints: a use-dependent, outwardly rectifying current sensitive to the KV 1.3 blockers PAP-1 and ShK-186, an inwardly rectifying Ba2+ -sensitive Kir 2.1 current, and a Ca2+ -activated, TRAM-34-sensitive KCa 3.1 current. Both KV 1.3 and KCa 3.1 blockers inhibited pro-inflammatory cytokine production and iNOS and COX2 expression demonstrating that KV 1.3 and KCa 3.1 play important roles in microglia activation. Following differentiation with LPS or a combination of LPS and IFN-γ microglia exhibited high KV 1.3 current densities (∼50 pA/pF at 40 mV) and virtually no KCa 3.1 and Kir currents, while microglia differentiated with IL-4 exhibited large Kir 2.1 currents (∼ 10 pA/pF at -120 mV). KCa 3.1 currents were generally low but moderately increased following stimulation with IFN-γ or ATP (∼10 pS/pF). This differential K+ channel expression pattern suggests that KV 1.3 and KCa 3.1 inhibitors could be used to inhibit detrimental neuroinflammatory microglia functions. GLIA 2016;65:106-121.


Subject(s)
Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Kv1.3 Potassium Channel/metabolism , Microglia/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Animals , Cells, Cultured , Interferon-gamma/metabolism , Lipopolysaccharides/pharmacology , Macrophage Activation , Membrane Potentials , Mice, Inbred C57BL
5.
J Cereb Blood Flow Metab ; 36(12): 2146-2161, 2016 12.
Article in English | MEDLINE | ID: mdl-26661208

ABSTRACT

Activated microglia/macrophages significantly contribute to the secondary inflammatory damage in ischemic stroke. Cultured neonatal microglia express the K+ channels Kv1.3 and KCa3.1, both of which have been reported to be involved in microglia-mediated neuronal killing, oxidative burst and cytokine production. However, it is questionable whether neonatal cultures accurately reflect the K+ channel expression of activated microglia in the adult brain. We here subjected mice to middle cerebral artery occlusion with eight days of reperfusion and patch-clamped acutely isolated microglia/macrophages. Microglia from the infarcted area exhibited higher densities of K+ currents with the biophysical and pharmacological properties of Kv1.3, KCa3.1 and Kir2.1 than microglia from non-infarcted control brains. Similarly, immunohistochemistry on human infarcts showed strong Kv1.3 and KCa3.1 immunoreactivity on activated microglia/macrophages. We next investigated the effect of genetic deletion and pharmacological blockade of KCa3.1 in reversible middle cerebral artery occlusion. KCa3.1-/- mice and wild-type mice treated with the KCa3.1 blocker TRAM-34 exhibited significantly smaller infarct areas on day-8 after middle cerebral artery occlusion and improved neurological deficit. Both manipulations reduced microglia/macrophage activation and brain cytokine levels. Our findings suggest KCa3.1 as a pharmacological target for ischemic stroke. Of potential, clinical relevance is that KCa3.1 blockade is still effective when initiated 12 h after the insult.


Subject(s)
Intermediate-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , Neurogenic Inflammation/drug therapy , Stroke/pathology , Animals , Brain/metabolism , Brain Ischemia/pathology , Cells, Cultured , Disease Models, Animal , Humans , Infarction, Middle Cerebral Artery , Macrophage Activation , Mice , Molecular Targeted Therapy , Pyrazoles/pharmacology , Pyrazoles/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...