Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 2(6): 2985-2993, 2017 Jun 30.
Article in English | MEDLINE | ID: mdl-31457633

ABSTRACT

Quasi-one-dimensional structures from metal oxides have shown remarkable potentials with regard to their applicability in advanced technologies ranging from ultraresponsive nanoelectronic devices to advanced healthcare tools. Particularly due to the piezoresistive effects, zinc oxide (ZnO)-based nanowires showed outstanding performance in a large number of applications, including energy harvesting, flexible electronics, smart sensors, etc. In the present work, we demonstrate the versatile crystal engineering of ZnO nano- and microwires (up to centimeter length scales) by a simple flame transport process. To investigate the piezoresistive properties, particular ZnO nanowires were integrated on an electrical push-to-pull device, which enables the application of tensile strain and measurement of in situ electrical properties. The results from ZnO nanowires revealed a periodic variation in stress with respect to the applied periodic potential, which has been discussed in terms of defect relaxations.

2.
Sci Rep ; 6: 32913, 2016 09 12.
Article in English | MEDLINE | ID: mdl-27616632

ABSTRACT

In present work, the nano- and microscale tetrapods from zinc oxide were integrated on the surface of Aerographite material (as backbone) in carbon-metal oxide hybrid hierarchical network via a simple and single step magnetron sputtering process. The fabricated hybrid networks are characterized for morphology, microstructural and optical properties. The cathodoluminescence investigations revealed interesting luminescence features related to carbon impurities and inherent host defects in zinc oxide. Because of the wide bandgap of zinc oxide and its intrinsic defects, the hybrid network absorbs light in the UV and visible regions, however, this broadband photoabsorption behavior extends to the infrared (IR) region due to the dependence of the optical properties of ZnO architectures upon size and shape of constituent nanostructures and their doping by carbon impurities. Such a phenomenon of broadband photoabsorption ranging from UV to IR for zinc oxide based hybrid materials is novel. Additionally, the fabricated network exhibits strong visible light scattering behavior. The developed Aerographite/nanocrystalline ZnO hybrid network materials, equipped with broadband photoabsorption and strong light scattering, are very promising candidates for optoelectronic technologies.

SELECTION OF CITATIONS
SEARCH DETAIL
...