Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 12: 630013, 2021.
Article in English | MEDLINE | ID: mdl-33643258

ABSTRACT

Extremophiles are remarkable organisms that thrive in the harshest environments on Earth, such as hydrothermal vents, hypersaline lakes and pools, alkaline soda lakes, deserts, cold oceans, and volcanic areas. These organisms have developed several strategies to overcome environmental stress and nutrient limitations. Thus, they are among the best model organisms to study adaptive mechanisms that lead to stress tolerance. Genetic and structural information derived from extremophiles and extremozymes can be used for bioengineering other nontolerant enzymes. Furthermore, extremophiles can be a valuable resource for novel biotechnological and biomedical products due to their biosynthetic properties. However, understanding life under extreme conditions is challenging due to the difficulties of in vitro cultivation and observation since > 99% of organisms cannot be cultivated. Consequently, only a minor percentage of the potential extremophiles on Earth have been discovered and characterized. Herein, we present a review of culture-independent methods, sequence-based metagenomics (SBM), and single amplified genomes (SAGs) for studying enzymes from extremophiles, with a focus on prokaryotic (archaea and bacteria) microorganisms. Additionally, we provide a comprehensive list of extremozymes discovered via metagenomics and SAGs.

2.
Front Microbiol ; 11: 742, 2020.
Article in English | MEDLINE | ID: mdl-32411108

ABSTRACT

Environments previously thought to be uninhabitable offer a tremendous wealth of unexplored microorganisms and enzymes. In this paper, we present the discovery and characterization of a novel γ-carbonic anhydrase (γ-CA) from the polyextreme Red Sea brine pool Discovery Deep (2141 m depth, 44.8°C, 26.2% salt) by single-cell genome sequencing. The extensive analysis of the selected gene helps demonstrate the potential of this culture-independent method. The enzyme was expressed in the bioengineered haloarchaeon Halobacterium sp. NRC-1 and characterized by X-ray crystallography and mutagenesis. The 2.6 Å crystal structure of the protein shows a trimeric arrangement. Within the γ-CA, several possible structural determinants responsible for the enzyme's salt stability could be highlighted. Moreover, the amino acid composition on the protein surface and the intra- and intermolecular interactions within the protein differ significantly from those of its close homologs. To gain further insights into the catalytic residues of the γ-CA enzyme, we created a library of variants around the active site residues and successfully improved the enzyme activity by 17-fold. As several γ-CAs have been reported without measurable activity, this provides further clues as to critical residues. Our study reveals insights into the halophilic γ-CA activity and its unique adaptations. The study of the polyextremophilic carbonic anhydrase provides a basis for outlining insights into strategies for salt adaptation, yielding enzymes with industrially valuable properties, and the underlying mechanisms of protein evolution.

3.
FEBS Open Bio ; 9(2): 194-205, 2019 02.
Article in English | MEDLINE | ID: mdl-30761247

ABSTRACT

Enzymes originating from hostile environments offer exceptional stability under industrial conditions and are therefore highly in demand. Using single-cell genome data, we identified the alcohol dehydrogenase (ADH) gene, adh/a1a, from the Atlantis II Deep Red Sea brine pool. ADH/A1a is highly active at elevated temperatures and high salt concentrations (optima at 70 °C and 4 m KCl) and withstands organic solvents. The polyextremophilic ADH/A1a exhibits a broad substrate scope including aliphatic and aromatic alcohols and is able to reduce cinnamyl-methyl-ketone and raspberry ketone in the reverse reaction, making it a possible candidate for the production of chiral compounds. Here, we report the affiliation of ADH/A1a to a rare enzyme family of microbial cinnamyl alcohol dehydrogenases and explain unique structural features for halo- and thermoadaptation.


Subject(s)
Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/isolation & purification , Salts/metabolism , Alcohol Dehydrogenase/chemistry , Alcohol Dehydrogenase/metabolism , Indian Ocean , Salts/chemistry , Temperature
4.
ACS Chem Biol ; 13(1): 161-170, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29188989

ABSTRACT

Because only 0.01% of prokaryotic genospecies can be cultured and in situ observations are often impracticable, culture-independent methods are required to understand microbial life and harness potential applications of microbes. Here, we report a methodology for the production of proteins with desired functions based on single amplified genomes (SAGs) from unculturable species. We use this method to resurrect an alcohol dehydrogenase (ADH/D1) from an uncharacterized halo-thermophilic archaeon collected from a brine pool at the bottom of the Red Sea. Our crystal structure of 5,6-dihydroxy NADPH-bound ADH/D1 combined with biochemical analyses reveal the molecular features of its halo-thermophily, its unique habitat adaptations, and its possible reaction mechanism for atypical oxygen activation. Our strategy offers a general guide for using SAGs as a source for scientific and industrial investigations of "microbial dark matter."


Subject(s)
Alcohol Dehydrogenase/chemistry , Alcohol Dehydrogenase/metabolism , Genomics/methods , Alcohol Dehydrogenase/genetics , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Catalytic Domain , Crystallography, X-Ray , Ecosystem , Enzyme Stability , Genome, Archaeal , Indian Ocean , Manganese , NADP/metabolism , Oxygen/metabolism , Protein Conformation
5.
BMC Genomics ; 16: 662, 2015 Sep 03.
Article in English | MEDLINE | ID: mdl-26335097

ABSTRACT

BACKGROUND: Protein aggregation and its pathological effects are the major cause of several neurodegenerative diseases. In Huntington's disease an elongated stretch of polyglutamines within the protein Huntingtin leads to increased aggregation propensity. This induces cellular defects, culminating in neuronal loss, but the connection between aggregation and toxicity remains to be established. RESULTS: To uncover cellular pathways relevant for intoxication we used genome-wide analyses in a yeast model system and identify fourteen genes that, if deleted, result in higher polyglutamine toxicity. Several of these genes, like UGO1, ATP15 and NFU1 encode mitochondrial proteins, implying that a challenged mitochondrial system may become dysfunctional during polyglutamine intoxication. We further employed microarrays to decipher the transcriptional response upon polyglutamine intoxication, which exposes an upregulation of genes involved in sulfur and iron metabolism and mitochondrial Fe-S cluster formation. Indeed, we find that in vivo iron concentrations are misbalanced and observe a reduction in the activity of the prominent Fe-S cluster containing protein aconitase. Like in other yeast strains with impaired mitochondria, non-fermentative growth is impossible after intoxication with the polyglutamine protein. NMR-based metabolic analyses reveal that mitochondrial metabolism is reduced, leading to accumulation of metabolic intermediates in polyglutamine-intoxicated cells. CONCLUSION: These data show that damages to the mitochondrial system occur in polyglutamine intoxicated yeast cells and suggest an intricate connection between polyglutamine-induced toxicity, mitochondrial functionality and iron homeostasis in this model system.


Subject(s)
Mitochondria/metabolism , Peptides/toxicity , Saccharomyces cerevisiae/metabolism , Aconitate Hydratase/metabolism , Carbon/metabolism , Genes, Mitochondrial , Homeostasis/drug effects , Iron/metabolism , Mitochondria/drug effects , Phosphates/metabolism , Polyphosphates/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae Proteins/metabolism , Sequence Deletion , Up-Regulation/drug effects
6.
Front Microbiol ; 5: 134, 2014.
Article in English | MEDLINE | ID: mdl-24778629

ABSTRACT

Reliable functional annotation of genomic data is the key-step in the discovery of novel enzymes. Intrinsic sequencing data quality problems of single amplified genomes (SAGs) and poor homology of novel extremophile's genomes pose significant challenges for the attribution of functions to the coding sequences identified. The anoxic deep-sea brine pools of the Red Sea are a promising source of novel enzymes with unique evolutionary adaptation. Sequencing data from Red Sea brine pool cultures and SAGs are annotated and stored in the Integrated Data Warehouse of Microbial Genomes (INDIGO) data warehouse. Low sequence homology of annotated genes (no similarity for 35% of these genes) may translate into false positives when searching for specific functions. The Profile and Pattern Matching (PPM) strategy described here was developed to eliminate false positive annotations of enzyme function before progressing to labor-intensive hyper-saline gene expression and characterization. It utilizes InterPro-derived Gene Ontology (GO)-terms (which represent enzyme function profiles) and annotated relevant PROSITE IDs (which are linked to an amino acid consensus pattern). The PPM algorithm was tested on 15 protein families, which were selected based on scientific and commercial potential. An initial list of 2577 enzyme commission (E.C.) numbers was translated into 171 GO-terms and 49 consensus patterns. A subset of INDIGO-sequences consisting of 58 SAGs from six different taxons of bacteria and archaea were selected from six different brine pool environments. Those SAGs code for 74,516 genes, which were independently scanned for the GO-terms (profile filter) and PROSITE IDs (pattern filter). Following stringent reliability filtering, the non-redundant hits (106 profile hits and 147 pattern hits) are classified as reliable, if at least two relevant descriptors (GO-terms and/or consensus patterns) are present. Scripts for annotation, as well as for the PPM algorithm, are available through the INDIGO website.

7.
Nat Commun ; 4: 1571, 2013.
Article in English | MEDLINE | ID: mdl-23481379

ABSTRACT

Neurodegeneration is linked to protein aggregation in several human disorders. In Huntington's disease, the length of a polyglutamine stretch in Huntingtin is correlated to neuronal death. Here we utilize a model based on glutamine stretches of 0, 30 or 56 residues in Saccharomyces cerevisiae to understand how such toxic proteins interfere with cellular physiology. A toxicity-mimicking cytostatic effect is evident from compromised colony formation upon expression of polyglutamines. Interestingly, diploid cells are insensitive to polyglutamines and haploid cells can escape cytostasis by hyperploidization. Using a genome-wide screen for genes required to obtain the cytostatic effect, we identify a network related to the budding process and cellular division. We observe a striking mislocalization of the septins Cdc10 and Shs1 in cells arrested by polyglutamines, suggesting that the septin ring may be a pivotal structure connecting polyglutamine toxicity and ploidy.


Subject(s)
Gene Regulatory Networks/genetics , Genes, Fungal/genetics , Peptides/toxicity , Ploidies , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Bacterial Proteins/metabolism , Blotting, Western , Gene Knockout Techniques , Gene Regulatory Networks/drug effects , Green Fluorescent Proteins/metabolism , Guanidine/pharmacology , Haploidy , Humans , Luminescent Proteins/metabolism , Models, Genetic , Phenotype , Prions/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Septins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...