Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Geophys Res Atmos ; 121(6): 2939-2954, 2016 03 27.
Article in English | MEDLINE | ID: mdl-27840781

ABSTRACT

Discharge experiments were carried out at the Eindhoven University of Technology in 2013. The experimental setup was designed to search for electrons produced in meter-scale sparks using a 1 MV Marx generator. Negative voltage was applied to the high voltage (HV) electrode. Five thin (1 mm) plastic detectors (5 cm2 each) were distributed in various configurations close to the spark gap. Earlier studies have shown (for HV negative) that X-rays are produced when a cloud of streamers is developed 30-60 cm from the negative electrode. This indicates that the electrons producing the X-rays are also accelerated at this location, that could be in the strong electric field from counterstreamers of opposite polarity. Comparing our measurements with modeling results, we find that ∼300 keV electrons produced about 30-60 cm from the negative electrode are the most likely source of our measurements. A statistical analysis of expected detection of photon bursts by these fiber detectors indicates that only 20%-45% of the detected bursts could be from soft (∼10 keV) photons, which further supports that the majority of detected bursts are produced by relativistic electrons.

2.
J Geophys Res Atmos ; 120(21): 11191-11202, 2015 Nov 16.
Article in English | MEDLINE | ID: mdl-27867779

ABSTRACT

X-ray emission by sparks implies bremsstrahlung from a population of energetic electrons, but the details of this process remain a mystery. We present detailed statistical analysis of X-ray spectra detected by multiple detectors during sparks produced by 1 MV negative high-voltage pulses with 1 µs risetime. With over 900 shots, we statistically analyze the signals, assuming that the distribution of spark X-ray fluence behaves as a power law and that the energy spectrum of X-rays detectable after traversing ∼2 m of air and a thin aluminum shield is exponential. We then determine the parameters of those distributions by fitting cumulative distribution functions to the observations. The fit results match the observations very well if the mean of the exponential X-ray energy distribution is 86 ± 7 keV and the spark X-ray fluence power law distribution has index -1.29 ± 0.04 and spans at least 3 orders of magnitude in fluence.

SELECTION OF CITATIONS
SEARCH DETAIL
...