Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J R Soc Interface ; 20(199): 20220763, 2023 02.
Article in English | MEDLINE | ID: mdl-36751928

ABSTRACT

The ribosome flow model (RFM) is a phenomenological model for the flow of particles along a one-dimensional chain of n sites. It has been extensively used to study ribosome flow along the mRNA molecule during translation. When the transition rates along the chain are time-varying and jointly T-periodic the RFM entrains, i.e. every trajectory of the RFM converges to a unique T-periodic solution that depends on the transition rates, but not on the initial condition. In general, entrainment to periodic excitations like the 24 h solar day or the 50 Hz frequency of the electric grid is important in numerous natural and artificial systems. An interesting question, called the gain of entrainment (GOE) in the RFM, is whether proper coordination of the periodic translation rates along the mRNA can lead to a larger average protein production rate. Analysing the GOE in the RFM is non-trivial and partial results exist only for the RFM with dimensions n = 1, 2. We use a new approach to derive several results on the GOE in the general n-dimensional RFM. Perhaps surprisingly, we rigorously characterize several cases where there is no GOE, so to maximize the average production rate in these cases, the best choice is to use constant transition rates all along the chain.


Subject(s)
Models, Biological , Ribosomes , Ribosomes/metabolism , RNA, Messenger/metabolism , Electricity
2.
R Soc Open Sci ; 5(4): 172157, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29765669

ABSTRACT

The master equation plays an important role in many scientific fields including physics, chemistry, systems biology, physical finance and sociodynamics. We consider the master equation with periodic transition rates. This may represent an external periodic excitation like the 24 h solar day in biological systems or periodic traffic lights in a model of vehicular traffic. Using tools from systems and control theory, we prove that under mild technical conditions every solution of the master equation converges to a periodic solution with the same period as the rates. In other words, the master equation entrains (or phase locks) to periodic excitations. We describe two applications of our theoretical results to important models from statistical mechanics and epidemiology.

SELECTION OF CITATIONS
SEARCH DETAIL
...