Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 15(1): 7031, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39147736

ABSTRACT

Non-covalent interactions play an important role for the framework formation of two-dimensional covalent organic frameworks. Until now, π-π interactions and hydrogen bonding are the main reported forces facilitating the stacking of framework layers. Here, we present a two-dimensional anionic covalent organic framework based on tetratopic borate linkages, where layers are connected by ionic interactions between the linkage site and counter cations. The crystalline covalent organic framework is accessed through the formation of an amorphous borate-based polymer and subsequent solvothermal treatment. The progress of crystallization is investigated, revealing the crystallite growth and morphological change from agglomerated dense particles to hollow crystallite spheres. Due to the pillared nature, the crystallites can be exfoliated into nanosheets by sonication of the material in the presence of methanol. The crystallization and ordered arrangement of the lithium ions in the interlayer space is shown to benefit the conductivity tenfold compared to the amorphous material.

2.
Macromol Rapid Commun ; 44(11): e2300046, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37026544

ABSTRACT

Post-synthetic linker exchange performed on covalent organic frameworks (COFs) has become an important method to introduce functional building blocks into their backbone and thus to tune their chemical and physical properties. However, the linker exchange method has so far only been described for COFs with relatively weak linkages like imines. Herein, it is shown that this method can be also used for a post-synthetic linker exchange reaction on a ß-ketoenamine linked COF. The time needed to achieve considerable linker exchange is much prolonged compared to other COFs with less stable linkages, however, this enables to achieve very good control on the ratio of the respective building blocks within the framework.


Subject(s)
Metal-Organic Frameworks , Imines , Ketones/chemistry
3.
Nat Commun ; 13(1): 6317, 2022 Oct 23.
Article in English | MEDLINE | ID: mdl-36274186

ABSTRACT

When new covalent organic frameworks (COFs) are designed, the main efforts are typically focused on selecting specific building blocks with certain geometries and properties to control the structure and function of the final COFs. The nature of the linkage (imine, boroxine, vinyl, etc.) between these building blocks naturally also defines their properties. However, besides the linkage type, the orientation, i.e., the constitutional isomerism of these linkages, has rarely been considered so far as an essential aspect. In this work, three pairs of constitutionally isomeric imine-linked donor-acceptor (D-A) COFs are synthesized, which are different in the orientation of the imine bonds (D-C=N-A (DCNA) and D-N=C-A (DNCA)). The constitutional isomers show substantial differences in their photophysical properties and consequently in their photocatalytic performance. Indeed, all DCNA COFs show enhanced photocatalytic H2 evolution performance than the corresponding DNCA COFs. Besides the imine COFs shown here, it can be concluded that the proposed concept of constitutional isomerism of linkages in COFs is quite universal and should be considered when designing and tuning the properties of COFs.

4.
Angew Chem Int Ed Engl ; 60(36): 19797-19803, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34043858

ABSTRACT

Covalent organic frameworks (COFs) have emerged as an important class of organic semiconductors and photocatalysts for the hydrogen evolution reaction (HER)from water. To optimize their photocatalytic activity, typically the organic moieties constituting the frameworks are considered and the most suitable combinations of them are searched for. However, the effect of the covalent linkage between these moieties on the photocatalytic performance has rarely been studied. Herein, we demonstrate that donor-acceptor (D-A) type imine-linked COFs can produce hydrogen with a rate as high as 20.7 mmol g-1 h-1 under visible light irradiation, upon protonation of their imine linkages. A significant red-shift in light absorbance, largely improved charge separation efficiency, and an increase in hydrophilicity triggered by protonation of the Schiff-base moieties in the imine-linked COFs, are responsible for the improved photocatalytic performance.

SELECTION OF CITATIONS
SEARCH DETAIL