Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(12): 9092-9099, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38479375

ABSTRACT

Experimental setups for charge transport measurements are typically not compatible with the ultrahigh vacuum conditions for chemical doping, limiting the charge carrier density that can be investigated by transport methods. Field-effect methods, including dielectric gating and ionic liquid gating, achieve too low a carrier density to induce electronic phase transitions. To bridge this gap, we developed an integrated flip-chip method to dope graphene by alkali vapor in the diffusive regime, suitable for charge transport measurements at ultrahigh charge carrier density. We introduce a cesium droplet into a sealed cavity filled with inert gas to dope a monolayer graphene sample by the process of cesium atom diffusion, adsorption, and ionization at the graphene surface, with doping beyond an electron density of 4.7 × 1014 cm-2 monitored by operando Hall measurement. The sealed assembly is stable against oxidation, enabling measurement of charge transport versus temperature and magnetic field. Cyclotron mass inversion is observed via the Hall effect, indicative of the change in Fermi surface geometry associated with the Liftshitz transition at the hyperbolic M point of monolayer graphene. The transparent quartz substrate also functions as an optical window, enabling nonresonant Raman scattering. Our findings show that chemical doping, hitherto restricted to ultrahigh vacuum, can be applied in a diffusive regime at ambient pressure in an inert gas environment and thus enable charge transport studies in standard cryogenic environments.

2.
J Am Chem Soc ; 145(2): 1206-1215, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36586130

ABSTRACT

Boron nitride nanotubes (BNNTs) are an emerging class of molecular container offering new functionalities and possibilities for studying molecules at the nanoscale. Herein, BNNTs are demonstrated as highly effective nanocontainers for polyoxometalate (POM) molecules. The encapsulation of POMs within BNNTs occurs spontaneously at room temperature from an aqueous solution, leading to the self-assembly of a POM@BNNT host-guest system. Analysis of the interactions between the host-nanotube and guest-molecule indicate that Lewis acid-base interactions between W═O groups of the POM (base) and B-atoms of the BNNT lattice (acid) likely play a major role in driving POM encapsulation, with photoactivated electron transfer from BNNTs to POMs in solution also contributing to the process. The transparent nature of the BNNT nanocontainer allows extensive investigation of the guest-molecules by photoluminescence, Raman, UV-vis absorption, and EPR spectroscopies. These studies revealed considerable energy and electron transfer processes between BNNTs and POMs, likely mediated via defect energy states of the BNNTs and resulting in the quenching of BNNT photoluminescence at room temperature, the emergence of new photoluminescence emissions at cryogenic temperatures (<100 K), a photochromic response, and paramagnetic signals from guest-POMs. These phenomena offer a fresh perspective on host-guest interactions at the nanoscale and open pathways for harvesting the functional properties of these hybrid systems.


Subject(s)
Nanotubes , Nanotubes/chemistry , Boron Compounds/chemistry
3.
ACS Nano ; 16(5): 7448-7456, 2022 May 24.
Article in English | MEDLINE | ID: mdl-35442015

ABSTRACT

A magnetic field modifies optical properties and provides valley splitting in a molybdenum disulfide (MoS2) monolayer. Here we demonstrate a scalable approach to the epitaxial synthesis of MoS2 monolayer on a magnetic graphene/Co system. Using spin- and angle-resolved photoemission spectroscopy we observe a magnetic proximity effect that causes a 20 meV spin-splitting at the Γ̅ point and canting of spins at the K̅ point in the valence band toward the in-plane direction of cobalt magnetization. Our density functional theory calculations reveal that the in-plane spin component at K̅ is localized on Co atoms in the valence band, while in the conduction band it is localized on the MoS2 layer. The calculations also predict a 16 meV spin-splitting at the Γ̅ point and 8 meV K̅-K'¯ valley asymmetry for an out-of-plane magnetization. These findings suggest control over optical transitions in MoS2 via Co magnetization. Our estimations show that the magnetic proximity effect is equivalent to the action of the magnetic field as large as 100 T.

4.
Nat Commun ; 12(1): 2542, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33953174

ABSTRACT

Lateral heterojunctions of atomically precise graphene nanoribbons (GNRs) hold promise for applications in nanotechnology, yet their charge transport and most of the spectroscopic properties have not been investigated. Here, we synthesize a monolayer of multiple aligned heterojunctions consisting of quasi-metallic and wide-bandgap GNRs, and report characterization by scanning tunneling microscopy, angle-resolved photoemission, Raman spectroscopy, and charge transport. Comprehensive transport measurements as a function of bias and gate voltages, channel length, and temperature reveal that charge transport is dictated by tunneling through the potential barriers formed by wide-bandgap GNR segments. The current-voltage characteristics are in agreement with calculations of tunneling conductance through asymmetric barriers. We fabricate a GNR heterojunctions based sensor and demonstrate greatly improved sensitivity to adsorbates compared to graphene based sensors. This is achieved via modulation of the GNR heterojunction tunneling barriers by adsorbates.

5.
ACS Nano ; 14(10): 13629-13637, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-32910634

ABSTRACT

Cluster superlattice membranes consist of a two-dimensional hexagonal lattice of similar-sized nanoclusters sandwiched between single-crystal graphene and an amorphous carbon matrix. The fabrication process involves three main steps, the templated self-organization of a metal cluster superlattice on epitaxial graphene on Ir(111), conformal embedding in an amorphous carbon matrix, and subsequent lift-off from the Ir(111) substrate. The mechanical stability provided by the carbon-graphene matrix makes the membrane stable as a free-standing material and enables transfer to other substrates. The fabrication procedure can be applied to a wide variety of cluster materials and cluster sizes from the single-atom limit to clusters of a few hundred atoms, as well as other two-dimensional layer/host matrix combinations. The versatility of the membrane composition, its mechanical stability, and the simplicity of the transfer procedure make cluster superlattice membranes a promising material in catalysis, magnetism, energy conversion, and optoelectronics.

6.
Nano Lett ; 20(7): 4761-4767, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32510961

ABSTRACT

We present laser-induced photothermal synthesis of atomically precise graphene nanoribbons (GNRs). The kinetics of photothermal bottom-up GNR growth are unravelled by in situ Raman spectroscopy carried out in ultrahigh vacuum. We photothermally drive the reaction steps by short periods of laser irradiation and subsequently analyze the Raman spectra of the reactants in the irradiated area. Growth kinetics of chevron GNRs (CGNRs) and seven atoms wide armchair GNRs (7-AGNRs) is investigated. The reaction rate constants for polymerization, cyclodehydrogenation, and interribbon fusion are experimentally determined. We find that the limiting rate constants for CGNR growth are several hundred times smaller than for 7-AGNR growth and that interribbon fusion is an important elementary reaction occurring during 7-AGNR growth. Our work highlights that photothermal synthesis and in situ Raman spectroscopy are a powerful tandem for the investigation of on-surface reactions.

7.
Nat Commun ; 11(1): 1340, 2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32165617

ABSTRACT

We show that Cs intercalated bilayer graphene acts as a substrate for the growth of a strained Cs film hosting quantum well states with high electronic quality. The Cs film grows in an fcc phase with a substantially reduced lattice constant of 4.9 Å corresponding to a compressive strain of 11% compared to bulk Cs. We investigate its electronic structure using angle-resolved photoemission spectroscopy and show the coexistence of massless Dirac and massive Schrödinger charge carriers in two dimensions. Analysis of the electronic self-energy of the massive charge carriers reveals the crystallographic direction in which a two-dimensional Fermi gas is realized. Our work introduces the growth of strained metal quantum wells on intercalated Dirac matter.

8.
ACS Nano ; 14(1): 1055-1069, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31825586

ABSTRACT

A flat energy dispersion of electrons at the Fermi level of a material leads to instabilities in the electronic system and can drive phase transitions. Here we show that the flat band in graphene can be achieved by sandwiching a graphene monolayer by two cesium (Cs) layers. We investigate the flat band by a combination of angle-resolved photoemission spectroscopy experiment and the calculations. Our work highlights that charge transfer, zone folding of graphene bands, and the covalent bonding between C and Cs atoms are the origin of the flat energy band formation. Analysis of the Stoner criterion for the flat band suggests the presence of a ferromagnetic instability. The presented approach is an alternative route for obtaining flat band materials to twisting bilayer graphene which yields thermodynamically stable flat band materials in large areas.

9.
ACS Nano ; 13(9): 10210-10220, 2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31442021

ABSTRACT

For quasi-freestanding 2H-TaS2 in monolayer thickness grown by in situ molecular beam epitaxy on graphene on Ir(111), we find unambiguous evidence for a charge density wave close to a 3 × 3 periodicity. Using scanning tunneling spectroscopy, we determine the magnitude of the partial charge density wave gap. Angle-resolved photoemission spectroscopy, complemented by scanning tunneling spectroscopy for the unoccupied states, makes a tight-binding fit for the band structure of the TaS2 monolayer possible. As hybridization with substrate bands is absent, the fit yields a precise value for the doping of the TaS2 layer. Additional Li doping shifts the charge density wave to a 2 × 2 periodicity. Unexpectedly, the bilayer of TaS2 also displays a disordered 2 × 2 charge density wave. Calculations of the phonon dispersions based on a combination of density-functional theory, density-functional perturbation theory, and many-body perturbation theory enable us to provide phase diagrams for the TaS2 charge density wave as functions of doping, hybridization, and interlayer potentials, and offer insight into how they affect lattice dynamics and stability. Our theoretical considerations are consistent with the experimental work presented and shed light on previous experimental and theoretical investigations of related systems.

10.
Nano Lett ; 18(11): 7038-7044, 2018 11 14.
Article in English | MEDLINE | ID: mdl-30336056

ABSTRACT

By enhancing the photoluminescence from aligned seven-atom wide armchair-edge graphene nanoribbons using plasmonic nanoantennas, we are able to observe blinking of the emission. The on- and off-times of the blinking follow power law statistics. In time-resolved spectra, we observe spectral diffusion. These findings together are a strong indication of the emission originating from a single quantum emitter. The room temperature photoluminescence displays a narrow spectral width of less than 50 meV, which is significantly smaller than the previously observed ensemble line width of 0.8 eV. From spectral time traces, we identify three optical transitions, which are energetically situated below the lowest bulk excitonic state E11 of the nanoribbons. We attribute the emission to transitions involving Tamm states localized at the end of the nanoribbon. The photoluminescence from a single ribbon is strongly enhanced when its end is in the antenna hot spot resulting in the observed single molecule characteristics of the emission. Our findings illustrate the essential role of the end termination of graphene nanoribbons in light emission and allow us to construct a model for photoluminescence from nanoribbons.

11.
Nanoscale ; 10(37): 17975-17982, 2018 Sep 27.
Article in English | MEDLINE | ID: mdl-30226260

ABSTRACT

The opening of a band gap in graphene nanoribbons induces novel optical and electronic properties, strongly enhancing their application potential in nanoscale devices. Knowledge of the optical excitations and associated relaxation dynamics are essential for developing and optimizing device designs and functionality. Here we report on the optical excitations and associated relaxation dynamics in surface aligned 7-atom wide armchair graphene nanoribbons as seen by time-resolved spontaneous Stokes and anti-Stokes Raman scattering spectroscopy. On the anti-Stokes side we observe an optically induced increase of the scattering intensity of the Raman active optical phonons which we assign to changes in the optical phonon populations. The optical phonon population decays with a lifetime of ∼2 ps, indicating an efficient optical-acoustic phonon cooling mechanism. On the Stokes side we observe a substantial decrease of the phonon peak intensities which we relate to the dynamics of the optically induced exciton population. The exciton population shows a multi-exponential relaxation on the hundreds of ps time scale and is independent of the excitation intensity, indicating that exciton-exciton annihilation processes are not important and the exsistence of dark and trapped exciton states. Our results shed light on the optically induced phonon and exciton dynamics in surface aligned armchair graphene nanoribbons and demonstrate that time-resolved spontaneous Raman scattering spectroscopy is a powerful method for exploring quasi-particle dynamics in low dimensional materials.

12.
Nano Lett ; 18(9): 6045-6056, 2018 09 12.
Article in English | MEDLINE | ID: mdl-30157652

ABSTRACT

We employ ultra-high vacuum (UHV) Raman spectroscopy in tandem with angle-resolved photoemission (ARPES) to investigate the doping-dependent Raman spectrum of epitaxial graphene on Ir(111). The evolution of Raman spectra from pristine to heavily Cs doped graphene up to a carrier concentration of 4.4 × 1014 cm-2 is investigated. At this doping, graphene is at the onset of the Lifshitz transition and renormalization effects reduce the electronic bandwidth. The optical transition at the saddle point in the Brillouin zone then becomes experimentally accessible by ultraviolet (UV) light excitation, which achieves resonance Raman conditions in close vicinity to the van Hove singularity in the joint density of states. The position of the Raman G band of fully doped graphene/Ir(111) shifts down by ∼60 cm-1. The G band asymmetry of Cs doped epitaxial graphene assumes an unusual strong Fano asymmetry opposite to that of the G band of doped graphene on insulators. Our calculations can fully explain these observations by substrate dependent quantum interference effects in the scattering pathways for vibrational and electronic Raman scattering.

13.
ACS Nano ; 12(8): 7571-7582, 2018 Aug 28.
Article in English | MEDLINE | ID: mdl-30004663

ABSTRACT

We investigate the electronic and vibrational properties of bottom-up synthesized aligned armchair graphene nanoribbons of N = 7 carbon atoms width periodically doped by substitutional boron atoms (B-7AGNRs). Using angle-resolved photoemission spectroscopy and density functional theory calculations, we find that the dopant-derived valence and conduction band states are notably hybridized with electronic states of Au substrate and spread in energy. The interaction with the substrate leaves the bands with pure carbon character rather unperturbed. This results in an identical effective mass of ≈0.2 m0 for the next-highest valence band compared with pristine 7AGNRs. We probe the phonons of B-7AGNRs by ultrahigh-vacuum (UHV) Raman spectroscopy and reveal the existence of characteristic splitting and red shifts in Raman modes due to the presence of substitutional boron atoms. Comparing the Raman spectra for three visible lasers (red, green, and blue), we find that interaction with gold suppresses the Raman signal from B-7AGNRs and the energy of the green laser (2.33 eV) is closer to the resonant E22 transition. The hybridized electronic structure of the B-7AGNR-Au interface is expected to improve electrical characteristics of contacts between graphene nanoribbon and Au. The Raman fingerprint allows the easy identification of B-7AGNRs, which is particularly useful for device fabrication.

14.
ACS Appl Mater Interfaces ; 10(12): 9900-9903, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29516716

ABSTRACT

We report on the experimental demonstration and electrical characterization of N = 7 armchair graphene nanoribbon (7-AGNR) field effect transistors. The back-gated transistors are fabricated from atomically precise and highly aligned 7-AGNRs, synthesized with a bottom-up approach. The large area transfer process holds the promise of scalable device fabrication with atomically precise nanoribbons. The channels of the FETs are approximately 30 times longer than the average nanoribbon length of 30 nm to 40 nm. The density of the GNRs is high, so that transport can be assumed well-above the percolation threshold. The long channel transistors exhibit a maximum ION/ IOFF current ratio of 87.5.

15.
Dalton Trans ; 47(9): 2986-2991, 2018 Feb 27.
Article in English | MEDLINE | ID: mdl-29215105

ABSTRACT

We report on the synthesis and spectroscopic characterization of alkali metal intercalated ZrSe2 single crystals. ZrSe2 is produced by chemical vapour transport and then Li is intercalated. Intercalation is performed from the liquid phase (via butyllithium) and from the vapour phase. Raman spectroscopy of intercalated ZrSe2 reveals phonon energy shifts of the Raman active A1g and Eg phonon modes, the disappearance of two-phonon modes and new low wavenumber Raman modes. Angle-resolved photoemission spectroscopy is used to perform a mapping of the Fermi surface revealing an electron concentration of 4.7 × 1014 cm-2. We also perform vapour phase intercalation of K and Cs into ZrSe2 and observe similar changes in the Raman modes as for the Li case.

16.
Nano Lett ; 15(4): 2396-401, 2015 Apr 08.
Article in English | MEDLINE | ID: mdl-25734657

ABSTRACT

With the discovery and first characterization of graphene, its potential for spintronic applications was recognized immediately. Since then, an active field of research has developed trying to overcome the practical hurdles. One of the most severe challenges is to find appropriate interfaces between graphene and ferromagnetic layers, which are granting efficient injection of spin-polarized electrons. Here, we show that graphene grown under appropriate conditions on Co(0001) demonstrates perfect structural properties and simultaneously exhibits highly spin-polarized charge carriers. The latter was conclusively proven by observation of a single-spin Dirac cone near the Fermi level. This was accomplished experimentally using spin- and angle-resolved photoelectron spectroscopy, and theoretically with density functional calculations. Our results demonstrate that the graphene/Co(0001) system represents an interesting candidate for applications in devices using the spin degree of freedom.

17.
ACS Nano ; 9(1): 320-6, 2015 Jan 27.
Article in English | MEDLINE | ID: mdl-25560087

ABSTRACT

Oxygen reduction reaction (ORR) plays a key role in lithium-air batteries (LABs) that attract great attention thanks to their high theoretical specific energy several times exceeding that of lithium-ion batteries. Because of their high surface area, high electric conductivity, and low specific weight, various carbons are often materials of choice for applications as the LAB cathode. Unfortunately, the possibility of practical application of such batteries is still under question as the sustainable operation of LABs with carbon cathodes is not demonstrated yet and the cyclability is quite poor, which is usually associated with oxygen reduced species side reactions. However, the mechanisms of carbon reactivity toward these species are still unclear. Here, we report a direct in situ X-ray photoelectron spectroscopy study of oxygen reduction by lithiated graphene and graphene-based materials. Although lithium peroxide (Li2O2) and lithium oxide (Li2O) reactions with carbon are thermodynamically favorable, neither of them was found to react even at elevated temperatures. As lithium superoxide is not stable at room temperature, potassium superoxide (KO2) prepared in situ was used instead to test the reactivity of graphene with superoxide species. In contrast to Li2O2 and Li2O, KO2 was demonstrated to be strongly reactive.

18.
Nano Lett ; 14(9): 4982-8, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-25136909

ABSTRACT

Many propositions have been already put forth for the practical use of N-graphene in various devices, such as batteries, sensors, ultracapacitors, and next generation electronics. However, the chemistry of nitrogen imperfections in this material still remains an enigma. Here we demonstrate a method to handle N-impurities in graphene, which allows efficient conversion of pyridinic N to graphitic N and therefore precise tuning of the charge carrier concentration. By applying photoemission spectroscopy and density functional calculations, we show that the electron doping effect of graphitic N is strongly suppressed by pyridinic N. As the latter is converted into the graphitic configuration, the efficiency of doping rises up to half of electron charge per N atom.

19.
J Phys Condens Matter ; 25(4): 043001, 2013 Jan 30.
Article in English | MEDLINE | ID: mdl-23257769

ABSTRACT

A review on the electronic properties, growth and functionalization of graphene on metals is presented. Starting from the derivation of the electronic properties of an isolated graphene layer using the nearest neighbor tight-binding (TB) approximation for π and σ electrons, the TB model is then extended to third-nearest neighbors and interlayer coupling. The latter is relevant to few-layer graphene and graphite. Next, the conditions under which epitaxial graphene can be obtained by chemical vapor deposition are reviewed with a particular emphasis on the Ni(111) surface. Regarding functionalization, I first discuss the intercalation of monolayer Au into the graphene/Ni(111) interface, which renders graphene quasi-free-standing. The Au intercalated quasi-free-standing graphene is then the basis for chemical functionalization. Functionalization of graphene is classified into covalent, ionic and substitutional functionalization. As archetypical examples for these three possibilities I discuss covalent functionalization by hydrogen, ionic functionalization by alkali metals and substitutional functionalization by nitrogen heteroatoms.

20.
ACS Nano ; 6(12): 10590-7, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23157662

ABSTRACT

We report high-resolution scanning tunneling microscopy and spectroscopy of hydrogenated, quasi-free-standing graphene. For this material, theory has predicted the appearance of a midgap state at the Fermi level, and first angle-resolved photoemission spectroscopy (ARPES) studies have provided evidence for the existence of this state in the long-range electronic structure. However, the spatial extension of H defects, their preferential adsorption patterns on graphene, or local electronic structure are experimentally still largely unexplored. Here, we investigate the shapes and local electronic structure of H impurities that go with the aforementioned midgap state observed in ARPES. Our measurements of the local density of states at hydrogenated patches of graphene reveal a hydrogen impurity state near the Fermi level whose shape depends on the tip position with respect to the center of a patch. In the low H concentration regime, we further observe predominantly single hydrogenation sites as well as extended multiple C-H sites in parallel orientation to the lattice vectors, indicating an adsorption at the same graphene sublattice. This is corroborated by ARPES measurements showing the formation of a dispersionless hydrogen impurity state which is extended over the whole Brillouin zone.

SELECTION OF CITATIONS
SEARCH DETAIL
...