Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 12(44): 28831-28842, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36320519

ABSTRACT

High-entropy oxide (HEO) superconductors have been developed since very recently. Different superconductors can be produced in the form of a high-entropy compound, including REBa2Cu3O7-δ (REBCO). However, until now, mainly bulk samples (mostly in polycrystalline form) have been reported. In this work, the first CSD-grown high-entropy (HE) REBCO nanocomposite films were successfully synthesized. In particular, high-quality Gd0.2Dy0.2Y0.2Ho0.2Er0.2Ba2Cu3O7-δ nanocomposite films with 12 mol% BaHfO3 nanoparticles were grown on SrTiO3 substrates. The X-ray diffraction patterns show a near-perfect c-axis oriented grain growth. Both T c and 77 K J sf c, 91.9 K and 3.5 MA cm-2, respectively, are comparable with the values of the single-RE REBCO films. Moreover, at low temperatures, specifically at 30 K, the J c values are larger than those of the single-RE samples. A transmission electron microscopy (TEM) study, including energy-dispersive X-ray spectroscopy (EDXS) measurements, reveals that the different RE3+ ions are distributed homogeneously in the matrix without forming clusters. This distribution causes point-like pinning centres that explain the superior performances of these samples at low temperatures. Although still seen as a proof-of-concept for the feasibility of preparing such films, these results demonstrate that the HE REBCO films are a promising option for the future fabrication of high-performance coated conductors. In the investigated B-T range, however, their J c values are still lower than those of other, medium-entropy REBCO films, which shows that an optimization of the composition of the HE REBCO films is needed to maximize their performance.

2.
MAbs ; 14(1): 2024118, 2022.
Article in English | MEDLINE | ID: mdl-35090383

ABSTRACT

As the current biotherapeutic market is dominated by antibodies, the design of different antibody formats, like bispecific antibodies, is critical to the advancement of the field. In contrast to monovalent antibodies, which consist of two identical antigen-binding sites, bispecific antibodies can target two different epitopes by containing two different antigen-binding sites. Thus, the rise of new formats as successful therapeutics has reignited the interest in advancing and facilitating the efficient production of bispecific antibodies. Here, we investigate the influence of point mutations in the antigen-binding site, the paratope, on heavy and light chain pairing preferences by using molecular dynamics simulations. In agreement with experiments, we find that specific residues in the antibody variable domain (Fv), i.e., the complementarity-determining region (CDR) L3 and H3 loops, determine heavy and light chain pairing preferences. Excitingly, we observe substantial population shifts in CDR-H3 and CDR-L3 loop conformations in solution accompanied by a decrease in bispecific IgG yield. These conformational changes in the CDR3 loops induced by point mutations also influence all other CDR loop conformations and consequentially result in different CDR loop states in solution. However, besides their effect on the obtained CDR loop ensembles, point mutations also lead to distinct interaction patterns in the VH-VL interface. By comparing the interaction patterns among all investigated variants, we observe specific contacts in the interface that drive heavy and light chain pairing. Thus, these findings have broad implications in the field of antibody engineering and design because they provide a mechanistic understanding of antibody interfaces, by identifying critical factors driving the pairing preferences, and thus can help to advance the design of bispecific antibodies.


Subject(s)
Antibodies, Bispecific/chemistry , Complementarity Determining Regions/chemistry , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Light Chains/chemistry , Molecular Dynamics Simulation , Antibodies, Bispecific/genetics , Complementarity Determining Regions/genetics , Humans , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Light Chains/genetics , Protein Engineering
3.
Micron ; 127: 102753, 2019 12.
Article in English | MEDLINE | ID: mdl-31586831

ABSTRACT

Nano-structured phase masks offer intriguing possibilities in electron-beam shaping. The fabrication of such phase masks is typically achieved by focused (Ga+-)ion beam milling of thin membranes. To overcome the problem of Ga implantation in the phase mask, we explore the fabrication of silicon-nitride phase masks using thermal scanning probe lithography combined with wet and dry etching. The functionality of the phase masks is demonstrated by generation of electron Vortex and Bessel beams. Major benefit of thermal scanning probe lithography in addition to the absence of ion implantation is the high accuracy and control over the patterned structure and depth.

4.
Beilstein J Nanotechnol ; 10: 1290-1302, 2019.
Article in English | MEDLINE | ID: mdl-31293866

ABSTRACT

Background: Electron-beam shaping opens up the possibility for novel imaging techniques in scanning (transmission) electron microscopy (S(T)EM). Phase-modulating thin-film devices (phase masks) made of amorphous silicon nitride are commonly used to generate a wide range of different beam shapes. An additional conductive layer on such a device is required to avoid charging under electron-beam irradiation, which induces unwanted scattering events. Results: Phase masks of conductive amorphous carbon (aC) were successfully fabricated with optical lithography and focused ion beam milling. Analysis by TEM shows the successful generation of Bessel and vortex beams. No charging or degradation of the aC phase masks was observed. Conclusion: Amorphous carbon can be used as an alternative to silicon nitride for phase masks at the expense of a more complex fabrication process. The quality of arbitrary beam shapes could benefit from the application of phase masks made of amorphous C.

SELECTION OF CITATIONS
SEARCH DETAIL
...