Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Acoust Soc Am ; 153(4): 2090, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37092927

ABSTRACT

A method for the determination of longitudinal and transverse bulk acoustic wave attenuation from measurements of the decay-rate of two independent zero-group-velocity resonances in a couple of matched plates is presented. A linear relation is derived, which links the bulk-wave attenuation coefficients to the decay-rate of plate-resonances. The relation is used to determine the acoustic loss of tungsten at GHz frequencies from noncontact laser-ultrasonic measurements in plates with thicknesses of about 1 µm. The longitudinal and transverse attenuation was found to amount to 1918 m-1 and 7828 m-1 at 2.16 GHz and 3265 m-1 and 12181 m-1 at 2.46 GHz. The presented approach is validated with calculated responses to a thermoelastic source, and the accuracy of the obtained attenuation values is estimated to be in the range of 10%.

2.
Opt Express ; 28(7): 9823-9832, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32225582

ABSTRACT

Focusing light through turbid media using wavefront shaping generally requires a noninvasive guide star to provide feedback on the focusing process. Here we report a photoacoustic guide star mechanism suitable for wavefront shaping through a scattering wall that is based on the fluctuations in the photoacoustic signals generated in a micro-vessel filled with flowing absorbers. The standard deviation of photoacoustic signals generated from random distributions of particles is dependent on the illumination volume and increases nonlinearly as the illumination volume is decreased. We harness this effect to guide wavefront shaping using the standard deviation of the photoacoustic response as the feedback signal. We further demonstrate sub-acoustic resolution optical focusing through a diffuser with a genetic algorithm optimization routine.

3.
Sci Rep ; 9(1): 15216, 2019 Oct 23.
Article in English | MEDLINE | ID: mdl-31645576

ABSTRACT

Lamb waves exhibit conical dispersion at zero wave number when an accidental degeneracy occurs between thickness mode longitudinal and shear resonances of the same symmetry. Here we investigate the propagation of Lamb waves generated at the conical point frequency and the interaction of these waves with defects and interfaces. The group velocity and mode shapes of Lamb waves at the conical point are found, and it is shown that as the wavenumber gets close to zero, considerable group velocity is seen only for material properties supporting a degeneracy or near-degeneracy. The unusual wave propagation and mode conversion of Lamb waves generated at the conical point are elucidated through numerical simulations. Experimental measurements of near conical point Lamb wave interaction with holes in a plate demonstrate that these waves flow around defects while maintaining a constant phase of oscillation across that plate surface.

4.
Ultrasonics ; 65: 1-4, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26527393

ABSTRACT

In the presented work, the characterization of plates using zero group velocity Lamb modes is discussed. First, analytical expressions are shown for the determination of the k-ω location of the zero group velocity Lamb modes as a function of the Poisson's ratio. The analytical expressions are solved numerically and an inverse problem is formulated to determine the unknown wave velocities in plates of known thickness. The analysis is applied to determine the elastic properties of tungsten and aluminum plates based on the experimentally measured frequency spectra.

5.
J Acoust Soc Am ; 138(1): 242-50, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26233023

ABSTRACT

The excitability of zero group velocity (ZGV) Lamb waves using a pulsed laser source is investigated experimentally and through numerical simulation. Experimentally, a laser based ultrasonic technique is used to find the optical spot size on the sample surface that allows an optimal coupling of the optical energy into the ZGV mode. Numerical simulations, using the time domain finite differences technique, are carried out to model the thermoelastic generation process by laser irradiation and the propagation of the generated acoustic waves. The experimental results are in good agreement with the numerical predictions. The experimentally and numerically obtained responses of the plate are investigated by a short-time Fourier transform. The responses show that the source diameter does not affect the fundamental behavior of the temporal decay of the ZGV mode.

6.
Ultrasonics ; 54(3): 759-62, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24268025

ABSTRACT

This article elaborates on the crossing points of the frequency-wavenumber branches for the symmetric and anti-symmetric Lamb modes in a homogeneous plate. It is shown both theoretically as well as experimentally that at these crossing points either the normal or the longitudinal components of modal displacement attain an extreme value, i.e. a maximum or it vanishes. This behavior is assessed herein using a method due to Mindlin, who showed that the dispersion curves for a plate with mixed boundary conditions - which are associated with uncoupled shear and dilatational modes - provide bounds to the spectral lines of the free plate. Therefore, a subset of the crossing points of the symmetric and antisymmetric Lamb modes for a free plate coincide with the crossing points for a plate with mixed boundary conditions.


Subject(s)
Manufactured Materials , Models, Theoretical , Scattering, Radiation , Sound , Computer Simulation , Radiation Dosage , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...