Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Med Imaging ; 24(1): 109, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745329

ABSTRACT

BACKGROUND: Spinal deformations, except for acute injuries, are among the most frequent reasons for visiting an orthopaedic specialist and musculoskeletal treatment in adults and adolescents. Data on the morphology and anatomical structures of the spine are therefore of interest to orthopaedics, physicians, and medical scientists alike, in the broad field from diagnosis to therapy and in research. METHODS: Along the course of developing supplementary methods that do not require the use of ionizing radiation in the assessment of scoliosis, twenty CT scans from females and males with various severity of spinal deformations and body shape have been analysed with respect to the transverse distances between the vertebral body and the spinous process end tip and the skin, respectively, at thoracic and lumbar vertebral levels. Further, the locations of the vertebral bodies have been analysed in relation to the patient's individual body shape and shown together with those from other patients by normalization to the area encompassed by the transverse body contour. RESULTS: While the transverse distance from the vertebral body to the skin varies between patients, the distances from the vertebral body to the spinous processes end tips tend to be rather similar across different patients of the same gender. Tables list the arithmetic mean distances for all thoracic and lumbar vertebral levels and for different regions upon grouping into mild, medium, and strong spinal deformation and according to the range of spinal deformation. CONCLUSIONS: The distances, the clustering of the locations of the vertebral bodies as a function of the vertebral level, and the trends therein could in the future be used in context with biomechanical modeling of a patient's individual spinal deformation in scoliosis assessment using 3D body scanner images during follow-up examinations.


Subject(s)
Lumbar Vertebrae , Scoliosis , Thoracic Vertebrae , Tomography, X-Ray Computed , Humans , Male , Female , Thoracic Vertebrae/diagnostic imaging , Tomography, X-Ray Computed/methods , Lumbar Vertebrae/diagnostic imaging , Adult , Adolescent , Scoliosis/diagnostic imaging , Middle Aged , Aged , Young Adult
2.
J Orthop Translat ; 38: 12-22, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36313977

ABSTRACT

Purpose: Clinical examinations of scoliosis often includes X-rays. Regular clinical monitoring is recommended in particular at young age, because of the high risk of progression during periods of rapid growth. Supplementary methods free of ionizing radiation thus could help to reduce the potential risk of ionizing radiation related health problems. Methods: Twelve 3D scan images from female and male patients with different types and severities of spinal deformations were analysed using body scanner image analysis tools. The scan images were captured with a 3D body scanner, which used an infrared sensor and a video camera. To calculate and compare with the patient's specific spinal deformations, simulations based on finite elements methods were performed on biomechanical models of ribcage and spinal column. Results: The methods and parameters presented here are in good agreement with corresponding X-rays, used for comparison. High correlation coefficients of ‖ρ s ‖ ≥ 0.87 between Cobb angle and lateral deviation, as well as between Cobb angle and rotation of the vertebrae, indicate that the parameters could provide supplementary informations in the assessment of spinal deformations. So-called apex angles, in addition introduced to relate the results of the present method with Cobb angles, show strong correlations of ‖ρ s ‖ ≥ 0.68 and thus could be used for comparison in later follow-up examinations. Conclusion: The user-friendly 3D body scanner image analysis tools enable orthopaedic specialists to simulate, visualize and inspect patient's specific spinal deformations. The method is intended to provide supplementary information in complement to the Cobb angle for the assessment of spinal deformations in clinical daily routine and might have the potential to reduce X-rays in follow-up examinations. The Translational Potential of this article: The study presents a new method, based on 3D body scanner images and biomechanical modelling, that has the potential to reduce X-rays when monitoring scoliosis especially in young patients.

3.
PLoS One ; 17(9): e0275395, 2022.
Article in English | MEDLINE | ID: mdl-36178916

ABSTRACT

Scoliosis is one of the most common pediatric spinal diseases that leads to a three-dimensional deformity of the spine and has a high risk of progression during growth. Regular clinical monitoring and follow-up X-rays are needed to providing proper treatment at that time. Repetitive X-rays can results in an increased risk of radiation related health problems. We present a non-invasive, ionizing radiation-free method for assessing scoliosis and its progression from the 3D images of the body torso, captured by a body scanner. A new concept is introduced based on a mathematical method in polar coordinate system to quantify and characterize the deformities in the torso from 2D transverse cross-sections of the 3D torso images at example cases for a healthy individual and for two patients with scoliosis. To capture quantitatively the characteristics of scoliosis, and to verify them at the example cases two asymmetry parameters and a linear fitting parameter are calculated: a) back side area asymmetry, b) left right area asymmetry, and c) coefficient of determination (R2). Within the analyzed patients, both the area asymmetries are maximum at the apex of scoliosis, and increase with the severity of scoliosis. R2 values are smaller in the case of patients compared with the healthy. Furthermore, the parameters show a trend when compared with the Cobb angle from the X-ray and the findings match with clinical examination. Therefore, the quantities are able to capture, certain characteristics associated with scoliosis. These quantities can be compared as a measure of deformities of torso, during the follow-up examinations in the future, without ionizing radiations.


Subject(s)
Scoliosis , Child , Humans , Imaging, Three-Dimensional/methods , Mathematical Concepts , Radiography , Scoliosis/diagnostic imaging , Spine/diagnostic imaging , Torso/diagnostic imaging
4.
PLoS One ; 16(2): e0243736, 2021.
Article in English | MEDLINE | ID: mdl-33566808

ABSTRACT

Adolescent idiopathic scoliosis, is a three-dimensional spinal deformity characterized by lateral curvature and axial rotation around the vertical body axis of the spine, the cause of which is yet unknown. The fast progression entails regular clinical monitoring, including X-rays. Here we present an approach to evaluate scoliosis from the three-dimensional image of a patient's torso, captured by an ionizing radiation free body scanner, in combination with a model of the ribcage and spine. A skeletal structure of the ribcage and vertebral column was modelled with computer aided designed software and was used as an initial structure for macroscopic finite element method simulations. The basic vertebral column model was created for an adult female in an upright position. The model was then used to simulate the patient specific scoliotic spine configurations. The simulations showed that a lateral translation of a vertebral body results in an effective axial rotation and could reproduce the spinal curvatures. The combined method of three-dimensional body scan and finite element model simulations thus provide quantitative anatomical information about the position, rotation and inclination of the thoracic and lumbar vertebrae within a three-dimensional torso. Furthermore, the simulations showed unequal distributions of stress and strain profiles across the intervertebral discs, due to their distortions, which might help to further understand the pathogenesis of scoliosis.


Subject(s)
Finite Element Analysis , Scoliosis/diagnostic imaging , Spine/diagnostic imaging , Adolescent , Female , Humans , Imaging, Three-Dimensional/methods , Models, Anatomic , Radiography/methods , Spine/anatomy & histology
5.
Biomed Res Int ; 2019: 4715720, 2019.
Article in English | MEDLINE | ID: mdl-31211138

ABSTRACT

PURPOSE: Children with neurological disorders, such as cerebral palsy (CP), have a high risk of developing scoliosis during growth. The fast progression of scoliosis implies in several cases frequent clinical and X-ray examinations. We present an ionizing radiation-free, noncontacting method to estimate the trajectory of the vertebral column and to potentially facilitate medical diagnosis in cases where an X-ray examination is not indicated. METHODS: A body scanner and corresponding analysis software tools have been developed to get 3D surface scans of patient torsos and to analyze their spinal curvatures. The trajectory of the vertebral column has been deduced from the body contours at different transverse sectional planes along the vertical torso axis. In order to verify the present methods, we have analyzed twenty-five torso contours, extracted from computer tomography (CT) images of patients who had a CT scan for other medical reasons, but incidentally also showed a scoliosis. The software tools therefore process data from the body scanner as well as X-ray or CT images. RESULTS: The methods presented show good results in the estimations of the lateral deviation of the spine for mild and moderate scoliosis. The partial mismatch for severe cases is associated with a less accurate estimation of the rotation of the vertebrae around the vertical body axis in these cases. In addition, distinct torso contour shapes, in the transverse sections, have been characterized according to the severity of the scoliosis. CONCLUSION: The hardware and software tools are a first step towards an ionizing radiation-free analysis of progression of scoliosis. However, further improvements of the analysis methods and tests on a larger number of data sets with diverse types of scoliosis are necessary, before its introduction into clinical application as a supplementary tool to conventional examinations.


Subject(s)
Imaging, Three-Dimensional , Posture , Scoliosis/diagnostic imaging , Software , Adolescent , Adult , Aged , Aged, 80 and over , Child , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...