Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Water Res ; 45(10): 3047-54, 2011 May.
Article in English | MEDLINE | ID: mdl-21496859

ABSTRACT

The herbicide Glyphosate was detected in River Havel (Berlin, Germany) in concentrations between 0.1 and 2 µg/L (single maximum outlier: 5 µg/L). As the river indirectly acts as drinking water source for the city's 3.4 Mio inhabitants potential risks for drinking water production needed to be assessed. For this reason laboratory (sorption and degradation studies) and technical scale investigations (bank filtration and slow sand filter experiments) were carried out. Batch adsorption experiments with Glyphosate yielded a low K(F) of 1.89 (1/n = 0.48) for concentrations between 0.1 and 100 mg/L. Degradation experiments at 8 °C with oxygen limitation resulted in a decrease of Glyphosate concentrations in the liquid phase probably due to slow adsorption (half life: 30 days). During technical scale slow sand filter (SSF) experiments Glyphosate attenuation was 70-80% for constant inlet concentrations of 0.7, 3.5 and 11.6 µg/L, respectively. Relevant retardation of Glyphosate breakthrough was observed despite the low adsorption potential of the sandy filter substrate and the relatively high flow velocity. The VisualCXTFit model was applied with data from typical Berlin bank filtration sites to extrapolate the results to a realistic field setting and yielded sufficient attenuation within a few days of travel time. Experiments on an SSF planted with Phragmites australis and an unplanted SSF with mainly vertical flow conditions to which Glyphosate was continuously dosed showed that in the planted SSF Glyphosate retardation exceeds 54% compared to 14% retardation in the unplanted SSF. The results show that saturated subsurface passage has the potential to efficiently attenuate glyphosate, favorably with aerobic conditions, long travel times and the presence of planted riparian boundary buffer strips.


Subject(s)
Glycine/analogs & derivatives , Biodegradation, Environmental , Filtration , Glycine/isolation & purification , Isoxazoles , Models, Chemical , Organophosphonates/isolation & purification , Oxidation-Reduction , Plant Development , Silicon Dioxide/chemistry , Surface Properties , Tetrazoles , Glyphosate
2.
Sci Total Environ ; 409(4): 655-63, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-21112614

ABSTRACT

Bank filtration (BF) is a well established and proven natural water treatment technology, where surface water is infiltrated to an aquifer through river or lake banks. Improvement of water quality is achieved by a series of chemical, biological and physical processes during subsurface passage. This paper aims at identifying climate sensitive factors affecting bank filtration performance and assesses their relevance based on hypothetical 'drought' and 'flood' climate scenarios. The climate sensitive factors influencing water quantity and quality also have influence on substance removal parameters such as redox conditions and travel time. Droughts are found to promote anaerobic conditions during bank filtration passage, while flood events can drastically shorten travel time and cause breakthrough of pathogens, metals, suspended solids, DOC and organic micropollutants. The study revealed that only BF systems comprising an oxic to anoxic redox sequence ensure maximum removal efficiency. The storage capacity of the banks and availability of two source waters renders BF for drinking water supply less vulnerable than surface water or groundwater abstraction alone. Overall, BF is vulnerable to climate change although anthropogenic impacts are at least as important.


Subject(s)
Climate Change , Climate , Filtration/methods , Fresh Water/chemistry , Water Pollution/prevention & control , Floods , Water Movements , Water Pollutants , Water Supply
3.
Article in German | MEDLINE | ID: mdl-17334885

ABSTRACT

Cyanobacterial toxins are substances produced by cyanobacteria or blue-green algae. They can occur in surface waters worldwide and have to be reliably removed when using affected surface waters as a drinking water source. Bank filtration has been used for 150 years for drinking water (pre-)treatment. It utilizes natural elimination processes like sorption and degradation in the sub-surface. Retention of cells on the sediment surface is the most prominent process for eliminating these primarily cell-bound toxins. Middle to coarse grained sands eliminated more than 99.9 % of intracellular toxins within the first 10 cm of flow path. Elimination of extracellular microcystin during underground passage is mainly due to biodegradation. Reversible adsorption processes do not reduce the total load but lead to longer contact times for extended biodegradation. Laboratory experiments showed that the sediment structure, i.e. high clay/silt and organic content, is crucial for maximum adsorption. However, redox conditions play an important role for degradation rates: under aerobic conditions half-lives of less than one day occurred frequently, whereas anoxic conditions resulted in lag phases of one day and more, as well as in half lives of more than 25 days. Field experiments showed that temperature is crucial for degradation velocity under natural conditions. Under optimal conditions 10 d residence time are sufficient to reduce microcystin concentrations to values below the WHO guidelines value for drinking water (1 microg/L). Under sub-optimal conditions a residence time of up to 90 days may be necessary.


Subject(s)
Bacterial Toxins/standards , Filtration , Marine Toxins/standards , Microcystins/standards , Water Pollutants, Chemical/standards , Water Purification , Water Supply/standards , Absorption , Bacterial Toxins/analysis , Cyanobacteria Toxins , Germany , Half-Life , Humans , Marine Toxins/analysis , Microcystins/analysis , Silicon Dioxide , Temperature , Water Pollutants, Chemical/analysis , Water Supply/analysis
4.
Article in German | MEDLINE | ID: mdl-17334886

ABSTRACT

A set-up for experiments in the flow-through mode was constructed in order to test the efficacy of substances used for disinfecting water during drinking water treatment. A flow-through mode - in contrast to experiments under stationary conditions (so-called batch experiments) - was chosen, because this experimental design allows experiments to be carried out under constant conditions for an extended time (up to one week) and because efficacy testing is possible repeatedly, simultaneously and under exactly the same conditions for short (about 0.5 min) and also longer (about 47 min) contact times. With this experimental design the effect of biofilms along the inner pipe surfaces can be included in the observations. The construction of the experimental set-up is based on experience with laboratory flow-through systems that were installed by the UBA's drinking water department (formerly Institute for Water-, Soil- and Air Hygiene (WaBoLu) Institute) for testing disinfection with chlorine. In the first step, a test pipe for the simulation of a water works situation was installed. Water of different qualities can be mixed in large volumes beforehand so that the experimental procedure can be run with constant water quality for a minimum of one week. The kinetics of the disinfection reaction can be observed by extracting samples from eight sampling ports situated along the test pipe. In order to assign exact residence times to each of the sampling ports, tracer experiments were performed prior to testing disinfectant efficacy. This paper gives the technical details of the experimental set-up and presents the results of the tracer experiments to provide an introduction with respect to its potential.


Subject(s)
Conservation of Natural Resources , Disinfection/instrumentation , Government Agencies , Water Purification/instrumentation , Water Supply/standards , Biofilms/growth & development , Equipment Design , Germany , Humans , Specimen Handling , Water Microbiology/standards , Water Pollutants, Chemical/standards
5.
Water Sci Technol ; 50(2): 211-4, 2004.
Article in English | MEDLINE | ID: mdl-15344793

ABSTRACT

River bank or slow sand filtration is a major procedure for processing surface water to drinking water in central europe. In order to model the performance of river bank and slow sand filtration plants, we are studying the different mechanisms by which the elimination of pathogens is realized. An important question concerning the mode of action of slow sand filters and river bank filtration units is the role of the colmation layer or "schmutzdecke" on the elimination of human pathogens. The schmutzdecke is an organic layer which develops at the surface of the sand filter short after the onset of operation. We have inoculated a pilot plant for slow sand filtration with coliphages and determined their rate of breakthrough and their final elimination. In the first experiment, with a colmation layer still missing, the breakthrough of the coliphages in the 80 cm mighty sandy bed amounted to ca. 40 %. In contrast, less than 1 % of coliphages escaped from the filter as the same experiment was repeated two months later, when a substantial colmation layer had developed. Our preliminary conclusions are that the colmation layer is extremely efficient in eliminating of viruses.


Subject(s)
Coliphages/isolation & purification , Waste Disposal, Fluid/methods , Water Purification/methods , Filtration , Rivers , Silicon Dioxide
6.
Waste Manag ; 21(2): 127-37, 2001.
Article in English | MEDLINE | ID: mdl-11220177

ABSTRACT

In a large area around the former open-pit lignite mines near Bitterfeld, Germany, groundwater taken from wells was analyzed for the major cations, anions, and trace elements. Quaternary and Tertiary sediments were collected from aquifers exposed on the sides of the pits and from boreholes outside the mines and analyzed for major and trace elements, as well as for carbonate, pyritic sulfur and total organic carbon. The pH and electrical conductivity of the sediments in suspension were measured. Significant differences were determined between the Tertiary sediments of the aquifers that were exposed to atmospheric oxygen during the lowering of the groundwater table and those outside the cone of depression. The greatest differences were found in the pyrite content, the pH values, and the electrical conductivity. In order to map the degree to which the mining of the lignite has affected the quality of the groundwater in the study area, the water samples were divided into six classes on the basis of their sulfate content. The neutralization potential was calculated to estimate the potential for acidification. Prediction of future groundwater quality is based on both (i) the present composition of the groundwater, surface water, and Quaternary and Tertiary aquifer sediments and (ii) the present and future groundwater flow directions. These studies have shown which parameters are important for future groundwater monitoring.


Subject(s)
Coal Mining , Environmental Monitoring/methods , Fresh Water/analysis , Geologic Sediments/analysis , Industrial Waste/analysis , Iron/analysis , Sulfides/analysis , Water Pollutants/analysis , Water Supply/analysis , Electric Conductivity , Environmental Monitoring/economics , Environmental Monitoring/standards , Forecasting , Germany , Humans , Hydrogen-Ion Concentration , Iron/metabolism , Oxidation-Reduction , Predictive Value of Tests , Sulfides/metabolism , Thermodynamics , Trace Elements/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...