Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
Chemosphere ; 361: 142421, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38797202

ABSTRACT

Research has demonstrated the presence of viruses in wastewater (WW), which can remain viable for a long period, posing potential health risks. Conventional WW treatment methods involving UV light, chlorine and ozone efficiently reduce microbial concentrations, however, they produce hazardous byproducts and microbial resistance that are detrimental to human health and the ecosystem. Hence, there is a need for novel disinfection techniques. Antimicrobial Photodynamic Inactivation (PDI) emerges as a promising strategy, utilizing photosensitizers (PS), light, and dioxygen to inactivate viruses. This study aims to assess the efficacy of PDI by testing methylene blue (MB) and the cationic porphyrin TMPyP as PSs, along a low energy consuming white light source (LED) at an irradiance of 50 mW/cm2, for the inactivation of bacteriophage Phi6. Phi6 serves as an enveloped RNA-viruses surrogate model in WW. PDI experiments were conducted in a buffer solution (PBS) and real WW matrices (filtered and non-filtered). Considering the environmental release of the treated effluents, this research also evaluated the ecotoxicity of the resulting solution (post-PDI treatment effluent) on the model organism Daphnia magna, following the Organisation for Economic Cooperation and Development (OECD) immobilization technical 202 guideline. Daphnids were exposed to WW containing the tested PS at different concentrations and dilutions (accounting for the dilution factor during WW release into receiving waters) over 48 h. The results indicate that PDI with MB efficiently inactivated the model virus in the different aqueous matrices, achieving reductions superior to 8 log10 PFU/mL, after treatments of 5 min in PBS and of ca. 90 min in WW. Daphnids survival increased when subjected to the PDI-treated WW with MB, considering the dilution factor. Overall, the effectiveness of PDI in eliminating viruses in WW, the fading of the toxic effects on daphnids after MB' irradiation and the rapid dilution effect upon WW release in the environment highlight the possibility of using MB in WW PDI-disinfection.


Subject(s)
Daphnia , Disinfection , Methylene Blue , Photosensitizing Agents , Wastewater , Wastewater/chemistry , Disinfection/methods , Daphnia/drug effects , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Animals , Methylene Blue/pharmacology , Methylene Blue/chemistry , Porphyrins/chemistry , Porphyrins/pharmacology , Bacteriophages/drug effects , Waste Disposal, Fluid/methods , Water Purification/methods , Ecotoxicology
2.
Molecules ; 28(17)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37687146

ABSTRACT

Since the occurrence of tumours is closely associated with the telomerase function and oncogene expression, the structure of such enzymes and genes are being recognized as targets for new anticancer drugs. The efficacy of several ligands in telomerase inhibition and in the regulation of genes expression, by an effective stabilisation of G-quadruplexes (G4) DNA structures, is being considered as a promising strategy in cancer therapies. When evaluating the potential of a ligand for telomerase inhibition, the selectivity towards quadruplex versus duplex DNA is a fundamental attribute due to the large amount of double-stranded DNA in the cellular nucleus. This study reports the evaluated efficacy of three tetracationic opp-dibenzoporphyrins, a free base, and the corresponding zinc(II) and nickel(II) complexes, to stabilise G4 structures, namely the telomeric DNA sequence (AG3(T2AG3)3). In order to evaluate the selectivity of these ligands towards G4 structures, their interaction towards DNA calf thymus, as a double-strand DNA sequence, were also studied. The data obtained by using different spectroscopic techniques, such as ultraviolet-visible, fluorescence, and circular dichroism, suggested good affinity of the free-base porphyrin and of its zinc(II) complex for the considered DNA structures, both showing a pattern of selectivity for the telomeric G4 structure. A pattern of aggregation in aqueous solution was detected for both Zn(II) and Ni(II) metallo dibenzoporphyrins and the ability of DNA sequences to induce ligand disaggregation was observed.


Subject(s)
G-Quadruplexes , Telomerase , Ligands , DNA , Telomere/genetics
3.
RSC Adv ; 13(39): 27613-27623, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37727585

ABSTRACT

La0.67Ca0.2Ba0.13Fe1-xTixO3 samples (x = 0 and 0.03) were synthesized by the auto-combustion method. Analysis of XRD diffractograms revealed that these compounds crystallize in the cubic system with the space group Pm3̄m. The dielectric properties have been studied in the 102-106 frequency range and the 120-280 K temperature range. Analysis of AC conductivity shows that the conduction mechanisms are of polaronic origin and that they are co-dominated by the NSPT and OLPT models. The monotonic increase in conductivity with increasing temperature results from the reduction of defect centers and the increase in charge carrier mobility. Such variation is consistent with impedance variation at different frequencies and temperatures indicating semiconductor behavior. Nyquist diagrams are characterized by the appearance of semi-circular arcs. These spectra are modeled in terms of equivalent electrical circuits confirming the contribution of grains (Rg//CPEg) and grain boundaries (Rgb//CPEgb). The dielectric analysis showed an evolution of the dielectric constant in accordance with Koop's theory and the phenomenological model of Maxwell-Wagner. The low conductivity and the high values of the real permittivity at low frequency make our compounds potential candidates for energy storage and applications for electronic devices and microwaves.

4.
Molecules ; 28(12)2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37375269

ABSTRACT

Skin cancer is one of the cancers that registers the highest number of new cases annually. Among all forms of skin cancer, melanoma is the most invasive and deadliest. The resistance of this form of cancer to conventional treatments has led to the employment of alternative/complementary therapeutic approaches. Photodynamic therapy (PDT) appears to be a promising alternative to overcome the resistance of melanoma to conventional therapies. PDT is a non-invasive therapeutic procedure in which highly reactive oxygen species (ROS) are generated upon excitation of a photosensitizer (PS) when subjected to visible light of an adequate wavelength, resulting in the death of cancer cells. In this work, inspired by the efficacy of tetrapyrrolic macrocycles to act as PS against tumor cells, we report the photophysical characterization and biological assays of isobacteriochlorins and their corresponding chlorins and porphyrins against melanoma cancer cells through a photodynamic process. The non-tumoral L929 fibroblast murine cell line was used as the control. The results show that the choice of adequate tetrapyrrolic macrocycle-based PS can be modulated to improve the performance of PDT.


Subject(s)
Dermatitis, Phototoxic , Melanoma , Photochemotherapy , Porphyrins , Skin Neoplasms , Humans , Animals , Mice , Photochemotherapy/methods , Porphyrins/pharmacology , Porphyrins/therapeutic use , Photosensitizing Agents/therapeutic use , Dermatitis, Phototoxic/drug therapy , Melanoma/drug therapy , Melanoma/pathology , Skin Neoplasms/drug therapy , Cell Line, Tumor
5.
Carbohydr Polym ; 313: 120894, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37182978

ABSTRACT

Starch is a biodegradable and biocompatible carbohydrate that, when combined with bioactive molecules, can be processed as biomimetic platforms with enhanced performance, allowing its use as active wound dressing materials. Porphyrinoid photosensitizers can tune the physicochemical/functional profile of biomacromolecules, allowing their use in anti-infective strategies. In this work, the feasibility of using the cationic 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin tetraiodide (TMPyP) to enhance the physicochemical, mechanical, antimicrobial performance, and wound healing ability of casted starch-based films was studied. TMPyP conferred a reddish coloration to the films, maintaining their pristine transparency. It increased by 87 % the films hydrophobicity and, depending on the TMPyP used, conferred mobility to the starch polymeric chains. Starch/TMPyP-based films effectively photoinactivated Escherichia coli (>99.99 %) and favored the wound healing process, even in the absence of light. Therefore, the incorporation of TMPyP into starch-based formulations revealed to be a promising strategy to tune the films compaction degree while giving rise to water tolerant and photosensitive biomaterials that can act as multitarget antimicrobial medical dressings and glycocarriers of active compounds relevant for effective skin wound healing.


Subject(s)
Anti-Infective Agents , Photosensitizing Agents , Photosensitizing Agents/pharmacology , Starch/chemistry , Anti-Infective Agents/chemistry , Bandages , Escherichia coli , Wound Healing
6.
Adv Drug Deliv Rev ; 195: 114731, 2023 04.
Article in English | MEDLINE | ID: mdl-36787865

ABSTRACT

Nanocarriers (NCs) are dynamic nanovehicles used to transport bioactive derivatives like therapeutical formulations, drugs and/or dyes. The current review assists in understanding the mechanism of action of several recent developed NCs with antimicrobial purposes. Here, nine NCs varieties are portrayed with focus on nineteen approaches that are fulfil described based on outcomes obtained from in vitro antimicrobial assays. All approaches have previously been verified and we underline the biochemical challenges of all NCs, expecting that the present data may encourage the application of NCs in endodontic antimicrobial basic research. Methodological limitations and the evident base gaps made not possible to draw a definite conclusion about the best NCs for achieving efficient antimicrobial outcomes in endodontic studies. Due to the lack of pre-clinical trials and the scarce number of clinical trials in this emergent area, there is still much room for improvement on several fronts.

7.
Sci Total Environ ; 860: 160427, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36435255

ABSTRACT

Wastewater (WW) insufficiently treated for the disinfection of microorganisms, including pathogenic ones, is a source of concern and a possible generator of public health problems. Traditional disinfection methods to reduce pathogens concentration (e.g., chlorination, ozonation, UV) are expensive, unsafe, and/or sometimes ineffective, highlighting the need for new disinfection technologies. The promising results of photodynamic inactivation (PDI) treatment to eradicate microorganisms suggest the efficacy of this treatment to improve WW quality. This work aimed to assess if PDI can be successfully extended to real contexts for the microbial inactivation in WW. For the first time, PDI experiments with 9 different water matrices compositions were performed to inquire about the influence of some of their physicochemical parameters on the effectiveness of microbial inactivation. Bacterial photoinactivation was tested in freshwater, aquaculture water, and seawater samples, as well as in influents and effluents samples from domestic, industrial, and a mixture of industrial and domestic WW receiving wastewater treatment plants (WWTPs). Additionally, PDI assays were performed in phosphate-buffered saline isotonic solution (PBS), used as an aqueous comparative matrix. To relate the PDI disinfection efficiency with the physicochemical compositions of the different used water matrices, a series of statistical analysis were performed, in order to support our main conclusions. Overall, the results showed that PDI is an effective and promising alternative to traditionally used WW disinfection methods, with a bacterial reduction of >3.0 log CFU/mL in all the water matrices within the first hour of PDI treatment, but also that the physicochemical composition of the aqueous matrices to be PDI-disinfected must be taken into account since they seem to influence the PDI efficacy, namely the pH, with acidic pH conditions seeming to be associated to a better PDI performance in general.


Subject(s)
Water Purification , Water , Disinfection/methods , Wastewater , Water Purification/methods , Bacteria , Treatment Outcome
8.
J Mater Chem B ; 11(3): 675-686, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36562480

ABSTRACT

Safety assessment of carbon nanomaterials is of paramount importance since they are on the frontline for applications in sensing, bioimaging and drug delivery. The biocompatibility and safety of functionalized nanodiamonds (NDs) are here addressed through the study of the pro-inflammatory response of RAW-264.7 macrophages exposed to new nanodiamonds@corrole hybrids. The corrole unit selected is as a prototype for a hydrophobic organic molecule that can function as a NIR fluorophore reporter, an optical sensor, a photodynamic therapy agent or a photocatalyst. The new functional nanohybrids containing detonated nanodiamonds (NDs) were obtained through esterification using carboxylated NDs and glycol corroles. The success of the covalent functionalization via carbodiimide activation was confirmed through X-ray photoelectron spectroscopy (XPS), Raman and Fourier transform infrared (FTIR) spectroscopy. The UV-vis absorption and emission spectra of the hybrids are additive with respect to the corrole features. The cellular uptake, localization, cell viability and effects on immune cell activation of the new hybrids and of the precursors were carefully investigated using RAW-264.7 macrophages. Overall results showed that the ND@corrole hybrids had no pro-inflammatory effects on the RAW-264.7 macrophage cell line, making them an ideal candidate for a wide range of biomedical applications.


Subject(s)
Nanodiamonds , Porphyrins , Nanodiamonds/chemistry , Drug Delivery Systems , Porphyrins/pharmacology , Macrophages
9.
Int J Mol Sci ; 23(21)2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36362367

ABSTRACT

Details on the unexpected formation of two new (dimethylamino)methyl corrole isomers from the reaction of 5,10,15-tris(pentafluorophenyl)corrolatogallium(III) with sarcosine and paraformaldehyde are presented. Semi-empirical calculations on possible mechanism pathways seem to indicate that the new compounds are probably formed through a Mannich-type reaction. The extension of the protocol to the free-base 5,10,15-tris(pentafluorophenyl)corrole afforded an unexpected new seven-membered ring corrole derivative, confirming the peculiar behavior of corroles towards known reactions when compared to the well-behaved porphyrin counterparts.


Subject(s)
Porphyrins , Sarcosine , Porphyrins/chemistry , Isomerism
10.
Int J Mol Sci ; 23(14)2022 Jul 09.
Article in English | MEDLINE | ID: mdl-35886956

ABSTRACT

An efficient synthetic access to new cationic porphyrin-bipyridine iridium(III) bis-cyclometalated complexes was developed. These porphyrins bearing arylbipyridine moieties at ß-pyrrolic positions coordinated with iridium(III), and the corresponding Zn(II) porphyrin complexes were spectroscopically, electrochemically, and electronically characterized. The features displayed by the new cyclometalated porphyrin-bipyridine iridium(III) complexes, namely photoinduced electron transfer process (PET), and a remarkable efficiency to generate 1O2, allowing us to envisage new challenges and opportunities for their applications in several fields, such as photo(catalysis) and photodynamic therapies.


Subject(s)
Iridium , Porphyrins , Cations , Electron Transport , Iridium/chemistry , Ligands
11.
Bioorg Chem ; 122: 105703, 2022 05.
Article in English | MEDLINE | ID: mdl-35248982

ABSTRACT

Telomerase, oncogenes and tumor suppressors are closely associated with tumour occurrence, therefore these structures are being recognized as targets for the development of new anticancer drugs. The efficacy of several molecules in telomerase inhibition and regulation of genes expression, by adduct formation with G-quadruplexes (G4), has been studied by biophysical and biochemical methods with promising results. We report here the synthesis and structural characterization of a small positively charged diketopyrrolo[3,4-c]pyrrole derivative, identified as DPP(PyMe)2, that showed very promising results as G4 stabilizing ligand. The data obtained from UV-Vis and fluorescence experiments suggest that DPP(PyMe)2 presents high affinity to G4 structures. Docking studies and molecular dynamics simulations unraveled the binding modes of the ligand with four G4 structures. The obtained results also allowed us to conclude that the DPP(PyMe)2 ligand binds into the top G-tetrad or in a mixed binding mode depending on the GQ structure. A remarkable selectivity of DPP(PyMe)2 for c-MYC and KRAS 32R in the presence of ds26 was observed by circular dichroism (CD) and fluorescence resonance energy transfer (FRET) melting experiments. CD titrations revealed a stabilization higher than 30 °C in the case of c-MYC G4 structure and, for the same sequence, DPP(PyMe)2 showed the ability to block the activity of Taq polymerase in a dose-dependent manner. The subcellular localization obtained with confocal microscopy corroborates the results obtained by the other techniques and the obtained data suggest that DPP(PyMe)2 is an attractive ligand for the development of G4 labelling probes.


Subject(s)
G-Quadruplexes , DNA/chemistry , Ligands , Pyrroles/pharmacology , Telomere
12.
Nanomaterials (Basel) ; 12(5)2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35269360

ABSTRACT

Dual probe porphyrin-gold nanorod polyelectrolyte microcapsules were developed to explore the enhancing effects of a plasmonic interface of self-assembled gold nanoparticles in the fluorescence emission from porphyrins loaded into the capsules' core. An analysis of fluorescence lifetime imaging microscopy (FLIM) data reports a notable 105-106-fold increase in the maximum detected photon rates from diffraction-limited spots and an overall six-fold increase in fluorescence as averaged over the whole microcapsule area. Large emission enhancements were correlated with decreases in fluorescence lifetimes. The microcapsule's design proved effective in achieving high fluorescent hybrids and may shed light on new possibilities for advanced materials imaging applications.

13.
Microorganisms ; 10(3)2022 Mar 19.
Article in English | MEDLINE | ID: mdl-35336234

ABSTRACT

The last two years have been marked by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. This virus is found in the intestinal tract; it reaches wastewater systems and, consequently, the natural receiving water bodies. As such, inefficiently treated wastewater (WW) can be a means of contamination. The currently used methods for the disinfection of WW can lead to the formation of toxic compounds and can be expensive or inefficient. As such, new and alternative approaches must be considered, namely, photodynamic inactivation (PDI). In this work, the bacteriophage φ6 (or, simply, phage φ6), which has been used as a suitable model for enveloped RNA viruses, such as coronaviruses (CoVs), was used as a model of SARS-CoV-2. Firstly, to understand the virus's survival in the environment, phage φ6 was subjected to different laboratory-controlled environmental conditions (temperature, pH, salinity, and solar and UV-B irradiation), and its persistence over time was assessed. Second, to assess the efficiency of PDI towards the virus, assays were performed in both phosphate-buffered saline (PBS), a commonly used aqueous matrix, and a secondarily treated WW (a real WW matrix). Third, as WW is generally discharged into the marine environment after treatment, the safety of PDI-treated WW was assessed through the determination of the viability of native marine water microorganisms after their contact with the PDI-treated effluent. Overall, the results showed that, when used as a surrogate for SARS-CoV-2, phage φ6 remains viable in different environmental conditions for a considerable period. Moreover, PDI proved to be an efficient approach in the inactivation of the viruses, and the PDI-treated effluent showed no toxicity to native aquatic microorganisms under realistic dilution conditions, thus endorsing PDI as an efficient and safe tertiary WW disinfection method. Although all studies were performed with phage φ6, which is considered a suitable model of SARS-CoV-2, further studies using SARS-CoV-2 are necessary; nevertheless, the findings show the potential of PDI for controlling SARS-CoV-2 in WW.

14.
Biomolecules ; 11(10)2021 09 25.
Article in English | MEDLINE | ID: mdl-34680037

ABSTRACT

The evidence that telomerase is overexpressed in almost 90% of human cancers justifies the proposal of this enzyme as a potential target for anticancer drug design. The inhibition of telomerase by quadruplex stabilizing ligands is being considered a useful approach in anticancer drug design proposals. Several aromatic ligands, including porphyrins, were exploited for telomerase inhibition by adduct formation with G-Quadruplex (GQ). 5,10,15,20-Tetrakis(N-methyl-4-pyridinium)porphyrin (H2TMPyP) is one of the most studied porphyrins in this field, and although reported as presenting high affinity to GQ, its poor selectivity for GQ over duplex structures is recognized. To increase the desired selectivity, porphyrin modifications either at the peripheral positions or at the inner core through the coordination with different metals have been handled. Herein, studies involving the interactions of TMPyP and analogs with different DNA sequences able to form GQ and duplex structures using different experimental conditions and approaches are reviewed. Some considerations concerning the structural diversity and recognition modes of G-quadruplexes will be presented first to facilitate the comprehension of the studies reviewed. Additionally, considering the diversity of experimental conditions reported, we decided to complement this review with a screening where the behavior of H2TMPyP and of some of the reviewed metal complexes were evaluated under the same experimental conditions and using the same DNA sequences. In this comparison under unified conditions, we also evaluated, for the first time, the behavior of the AgII complex of H2TMPyP. In general, all derivatives showed good affinity for GQ DNA structures with binding constants in the range of 106-107 M-1 and ligand-GQ stoichiometric ratios of 3:1 and 4:1. A promising pattern of selectivity was also identified for the new AgII derivative.


Subject(s)
Acenaphthenes/therapeutic use , Neoplasms/drug therapy , Porphyrins/therapeutic use , Telomerase/antagonists & inhibitors , Acenaphthenes/chemistry , Antineoplastic Agents/therapeutic use , Binding Sites/drug effects , G-Quadruplexes/drug effects , Humans , Ligands , Porphyrins/chemistry , Telomerase/genetics
15.
Molecules ; 26(17)2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34500746

ABSTRACT

In this study, we report the preparation of new mono-charged benzoporphyrin complexes by reaction of the appropriate neutral benzoporphyrin with (2,2'-bipyridine)dichloroplatinum(II) and of the analogs' derivatives synthesized through alkylation of the neutral scaffold with iodomethane. All derivatives were incorporated into polyvinylpyrrolidone (PVP) micelles. The ability of the resultant formulations to generate reactive oxygen species was evaluated, mainly the singlet oxygen formation. Then, the capability of the PVP formulations to act as photosensitizers against bladder cancer cells was assessed. Some of the studied formulations were the most active photosensitizers causing a decrease in HT-1376 cells' viability. This creates an avenue to further studies related to bladder cancer cells.


Subject(s)
Antineoplastic Agents/pharmacology , Photochemotherapy , Photosensitizing Agents/pharmacology , Porphyrins/pharmacology , Urinary Bladder Neoplasms/drug therapy , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cations/chemical synthesis , Cations/chemistry , Cations/pharmacology , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/chemistry , Porphyrins/chemical synthesis , Porphyrins/chemistry , Structure-Activity Relationship , Urinary Bladder Neoplasms/pathology
16.
J Photochem Photobiol B ; 223: 112301, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34492530

ABSTRACT

Prostate cancer (PCa) is the second most frequent cancer diagnosed in men worldwide. Among the common treatment options, photodynamic therapy (PDT) is being considered a promising local therapy to treat this cancer. Although PDT is an established treatment modality approved for several types of cancer, the low solubility, the reduced tumor selectivity, the absorption in the therapeutic window and the poor clearance from the body of the currently approved photosensitizers (PS) hampers its wide clinical application. In this regard, herein we synthesized three fluorinated porphyrinoid derivatives and entrapped them into polyvinylpyrrolidone (PVP) to prevent their aggregation and preserve their desirable photophysical properties under the physiological environment. In vitro studies revealed the negligible dark cytotoxicity of all PVP formulations (PS1@PVP, PS2@PVP and PS3@PVP) at the tested concentrations (5.0 to 20 µM), but also confirmed the significant photodynamic effect of PS2@PVP and PS3@PVP towards the PCa cell line PC-3, upon red light irradiation at an irradiance of 17.6 mW.cm-2. To provide insight into the underlying mechanisms of cell death under PDT treatment induced by PS2@PVP and PS3@PVP, their intracellular localization in PC-3 cells was firstly investigated by confocal microscopy. Since both PS2@PVP and PS3@PVP nanoparticles were mainly localized in mitochondria, the involvement of this organelle in PDT-induced apoptosis mediated by both formulations was further explored. Western blot analysis revealed that PDT treatment of PC-3 cells with either PS2@PVP or PS3@PVP resulted in the reduction of the expression level of the anti-apoptotic protein Bcl-2. As the photodamage to Bcl-2 after PDT with PS2@PVP and PS3@PVP was accompanied by the further activation of pro-caspase-3, we assumed that upon irradiation the photogenerated reactive oxygen species (ROS) were able to activate a caspase-dependent apoptotic response as a consequence of a post-mitochondrial event. Taken together, these findings demonstrate that among the tested fluorinated porphyrinoids, PS2@PVP and, particularly, PS3@PVP, are significantly more effective in overall PC-3 cell killing than PS1@PVP, thus highlighting their great potential as therapeutic agents for PCa.


Subject(s)
Apoptosis/drug effects , Photosensitizing Agents/pharmacology , Porphyrins/pharmacology , Caspase 3/metabolism , Cell Line, Tumor , Down-Regulation/drug effects , Drug Compounding , Humans , Male , Mitochondria/drug effects , Mitochondria/metabolism , Nanoparticles/chemistry , Photochemotherapy , Photosensitizing Agents/chemistry , Photosensitizing Agents/therapeutic use , Porphyrins/chemistry , Porphyrins/therapeutic use , Povidone/chemistry , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Reactive Oxygen Species/metabolism
17.
Antibiotics (Basel) ; 10(7)2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34202496

ABSTRACT

Pathogenic viruses are frequently present in marine and estuarine waters, due to poor wastewater (WW) treatments, which consequently affect water quality and human health. Chlorination, one of the most common methods used to ensure microbiological safety in tertiarily treated effluents, may lead to the formation of toxic chemical disinfection by-products on reaction with organic matter present in the effluents. Antimicrobial photodynamic therapy (aPDT) can be a promising disinfecting approach for the inactivation of pathogens, without the formation of known toxic by-products. Additionally, some studies have reported the potentiator effect on aPDT of some compounds, such as potassium iodide (KI) and hydrogen peroxide (H2O2). In the present study, the aPDT efficiency of a PS formulation constituted of five cationic porphyrins (Form) in the inactivation of E. coli T4-like bacteriophage, a model of mammalian viruses, in different aqueous matrices with different organic matter content, was evaluated. Photoinactivation studies were performed at different concentrations of Form and in the presence of the adjuvants KI and H2O2. The results showed that the efficiency of bacteriophage photoinactivation is correlated with the Form concentration, the amount of the organic matter in WW, and the adjuvant type. Form can be an effective alternative to controlling viruses in WW, particularly if combined with H2O2, allowing to significantly reduce PS concentration and treatment time. When combined with KI, the Form is less effective in inactivating T4-like bacteriophage in WW.

18.
Int J Mol Sci ; 22(8)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923523

ABSTRACT

Microorganisms, usually bacteria and fungi, grow and spread in skin wounds, causing infections. These infections trigger the immune system and cause inflammation and tissue damage within the skin or wound, slowing down the healing process. The use of photodynamic therapy (PDT) to eradicate microorganisms has been regarded as a promising alternative to anti-infective therapies, such as those based on antibiotics, and more recently, is being considered for skin wound-healing, namely for infected wounds. Among the several molecules exploited as photosensitizers (PS), porphyrinoids exhibit suitable features for achieving those goals efficiently. The capability that these macrocycles display to generate reactive oxygen species (ROS) gives a significant contribution to the regenerative process. ROS are responsible for avoiding the development of infections by inactivating microorganisms such as bacteria but also by promoting cell proliferation through the activation of stem cells which regulates inflammatory factors and collagen remodeling. The PS can act solo or combined with several materials, such as polymers, hydrogels, nanotubes, or metal-organic frameworks (MOF), keeping both the microbial photoinactivation and healing/regenerative processes' effectiveness. This review highlights the developments on the combination of PDT approach and skin wound healing using natural and synthetic porphyrinoids, such as porphyrins, chlorins and phthalocyanines, as PS, as well as the prodrug 5-aminolevulinic acid (5-ALA), the natural precursor of protoporphyrin-IX (PP-IX).


Subject(s)
Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Protoporphyrins/pharmacology , Re-Epithelialization , Skin Diseases, Infectious/therapy , Animals , Humans , Photosensitizing Agents/chemistry , Protoporphyrins/chemistry , Skin/drug effects , Skin/metabolism
19.
Eur J Med Chem ; 213: 113140, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33454549

ABSTRACT

The loss of neurons is strongly correlated with aging and aging-associated disorders. In this study, cell viability assays and mitochondrial function were performed to evaluate the effect of new spiro-pyrazole derivatives, prepared from aldehydes and 3-amino-1-phenyl-2-pyrazolin-5-one, on neuroprotection in an in vitro model of dopaminergic cell death induced by 1-methyl-4-phenylpyridinium (MPP+). The percentages of neuroprotection by derivatives were found between 21.26% and 52.67% at selected concentrations (10-50 µM) with compound 4d exerting the best neuroprotective effect. The results show that the studied spiropyrazolones perform important roles in dopaminergic neuroprotection and can be used for potential new therapies in the treatment of neurodegenerative disorders including Parkinson's disease.


Subject(s)
Neuroprotective Agents/pharmacology , Pyrazoles/pharmacology , Spiro Compounds/pharmacology , Cell Death/drug effects , Cell Survival/drug effects , Cytoprotection/drug effects , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Dose-Response Relationship, Drug , Humans , Molecular Structure , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
20.
Chemistry ; 27(6): 1990-1994, 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33185284

ABSTRACT

Photodynamic therapy (PDT) is a promising alternative to overcome the resistance of melanoma to conventional therapies. Currently applied photosensitizers (PS) are often based on tetrapyrrolic macrocycles like porphyrins. Unfortunately, in some cases the use of this type of derivative is limited due to their poor solubility in the biological environment. Feasible approaches to surpass this drawback are based on lipid formulations. Besides that, and inspired in the efficacy of potassium iodide (KI) for antimicrobial photodynamic therapy (aPDT), the combined effect of singlet oxygen (1 O2 ) with KI was assessed in this work, as an alternative strategy to potentiate the effect of PDT against resistant melanoma cells.


Subject(s)
Melanoma , Humans , Melanoma/drug therapy , Micelles , Photochemotherapy , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Porphyrins/pharmacology , Porphyrins/therapeutic use , Singlet Oxygen
SELECTION OF CITATIONS
SEARCH DETAIL
...