Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
JACC Basic Transl Sci ; 8(8): 1010-1021, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37719435

ABSTRACT

Familial hypercholesterolemia (FH) is the most common inherited life-threatening disorder of lipid metabolism. Early diagnosis and treatment are the key to reduce the cumulative life-long cardiovascular burden of patients with FH. The high number of LDLR variants described as variants of unknown significance is the largest obstacle to achieve a definitive FH diagnosis. This study established a time- and cost-effective high-throughput cell-based assay to functionally profile LDLR variants, which allowed us to discriminate disruptive rare variants from silent ones. This work generated a valuable resource for systematic functional characterization of LDLR variants solving 1 of the major issues to achieve a definitive FH diagnosis.

2.
J Clin Lipidol ; 16(4): 516-524, 2022.
Article in English | MEDLINE | ID: mdl-35568682

ABSTRACT

BACKGROUND: Familial Hypercholesterolemia (FH) is a semidominant disorder of the lipid metabolism associated with premature atherosclerosis and coronary heart disease. So far, about 3,000 unique LDLR variants have been described, most of which lack functional evidence proving their effect on LDLR function, despite the important role that functional studies play in variant classification. OBJECTIVE: In this work, we aimed to functionally characterize 13 rare missense variants, identified worldwide and in Portugal, in clinical FH patients. METHODS: LDLR-deficient CHO-ldlA7 cells were transfected with plasmids carrying different LDLR variants generated by site-directed mutagenesis. LDLR activity and expression were assessed by FACS. RESULTS: 11/13 variants affect LDLR function (p.Cys109Phe; p.Cys143Arg; p.Glu267Lys; p.Cys352Ser; p.Ile451Thr; p.His485Gln; p.Asp492Asn; p.Val500Ala; p.Gly529Arg; p.Phe614Ile; p.Glu626Lys) and 2/13 are inconclusive (p.Arg81Cys; p.Gly98Arg;). CONCLUSION: Of the 13 variants studied, 8 were classified as VUS by ACMG criteria, but for 7 of these 8, our functional studies were able to reassign them as Likely pathogenic or Pathogenic. For an accurate diagnosis, an effort must be made to improve functional characterization of putative disease-causing variants.


Subject(s)
Hyperlipoproteinemia Type II , Receptors, LDL , Animals , CHO Cells , Cricetinae , Cricetulus , Humans , Hyperlipoproteinemia Type II/diagnosis , Mutation , Mutation, Missense , Phenotype , Receptors, LDL/genetics , Receptors, LDL/metabolism
3.
Biomedicines ; 9(9)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34572405

ABSTRACT

Familial hypercholesterolemia (FH) is the most common genetic disorder of lipid metabolism, characterized by increased levels of total and LDL plasma cholesterol, which leads to premature atherosclerosis and coronary heart disease. FH phenotype has considerable genetic heterogeneity and phenotypic variability, depending on LDL receptor activity and lifestyle. To improve diagnosis and patient management, here, we characterized two single nucleotide missense substitutions at Methionine 1 of the human LDLR gene (c.1A>T/p.(Met1Leu) and c.1A>C/p.(Met1Leu)). We used a combination of Western blot, flow cytometry, and luciferase assays to determine the effects of both variants on the expression, activity, and synthesis of LDLR. Our data show that both variants can mediate translation initiation, although the expression of variant c.1A>T is very low. Both variants are in the translation initiation codon and codify for the same amino acid p.(Met1Leu), yet they lead to different levels of impairment on LDLR expression and activity, corroborating different efficiencies of the translation initiation at these non-canonical initiation codons. The functional data of these variants allowed for an improved American College of Medical Genetics (ACMG) classification for both variants, which can allow a more personalized choice of the lipid-lowering treatment and dyslipidemia management, ultimately improving patients' prognosis.

4.
Atherosclerosis ; 329: 14-21, 2021 07.
Article in English | MEDLINE | ID: mdl-34167030

ABSTRACT

BACKGROUND AND AIMS: Familial hypercholesterolaemia (FH) is an autosomal disorder of lipid metabolism presenting with increased cardiovascular risk. LDLR mutations are the cause of disease in 90% of the cases but functional studies have only been performed for about 15% of all LDLR variants. In the Portuguese Familial Hypercholesterolemia Study (PFHS), 142 unique LDLR alterations were identified and 44 (30%) lack functional characterization. The aim of the present work is to increase evidence for variant classification by performing functional characterization of 13 LDLR missense alterations found in Portugal and in 20 other countries. METHODS: Different LDLR mutants were generated by site-directed mutagenesis and expressed in CHO-ldlA7 cells lacking endogenous expression of LDLR. To determine the effects of alterations on LDLR function, cell surface expression, binding and uptake of FITC-LDL were assessed by flow cytometry and Western blot. RESULTS: Of the 13 variants studied 7 were shown to affect LDLR function - expression, binding or uptake, with rates lower than 60%: p.(Cys184Tyr), p.(Gly207_Ser213del); p.(His211Asp); p.(Asp221Tyr); p.(Glu288Lys); p.(Gly592Glu) and p.(Asp601Val)). The remaining 6 variants do not alter the LDLR function. CONCLUSIONS: These studies contributed to an update of these variants classification: from the 9 variants classified as variants of unknown significance, 7 have reached now a final classification and 3 variants have improved classification from likely pathogenic to pathogenic. In Portugal, an additional 55 patients received an FH definite diagnosis thanks to these studies. Since only likely pathogenic and pathogenic variants are clinically actionable, this work shows the importance of functional studies for variant classification.


Subject(s)
Hyperlipoproteinemia Type II , Receptors, LDL , Animals , CHO Cells , Cricetinae , Cricetulus , Humans , Hyperlipoproteinemia Type II/genetics , Mutation , Receptors, LDL/genetics
5.
Int J Food Microbiol ; 263: 67-73, 2017 Dec 18.
Article in English | MEDLINE | ID: mdl-29031106

ABSTRACT

The increasing incidence of intestinal colonization with extended-spectrum ß-lactamase (ESBL)-producing Enterobacteriaceae and Gram negative organisms that has been observed in food animals such as poultry, cattle and pigs, are suggestive that animals, food and environment are potential sources of ESBL-producing bacteria. Hence, the aim of this study was to characterized commensal E. coli obtained from healthy broiler and turkey flocks at slaughter for the presence of penicillinases-, ESBL-, extended-spectrum AmpC (ESAC)-, plasmid-mediated quinolone resistance- and MCR-encoding genes. Study of clonal relatedness showed genetic diversity among CTX-M-type, SHV-12 and TEM-52 producing isolates with human isolates of the same type, was also assessed. We detected that eleven (5.4%, 11/202) and forty-five (2.2%, 45/185) E. coli isolates from broilers and turkeys, respectively, carried blaESBL or blaESAC genes and two isolates from turkeys carried mcr-1 gene. A new variant blaCTX-M-166 was reported in a multidrug resistant isolate from a broiler flock. Overall, we detected a diversity of resistance mechanisms among E. coli from food-producing animals, all of them with high importance at a public health level.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cephalosporins/pharmacology , Colistin/pharmacology , Escherichia coli Infections/veterinary , Escherichia coli Proteins/genetics , Escherichia coli/drug effects , Poultry Diseases/microbiology , beta-Lactamases/genetics , Animals , Chickens/microbiology , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli Infections/microbiology , Escherichia coli Proteins/metabolism , Food Contamination/analysis , Plasmids/genetics , Plasmids/metabolism , Portugal , Turkeys/microbiology , beta-Lactamases/metabolism
7.
Front Microbiol ; 7: 671, 2016.
Article in English | MEDLINE | ID: mdl-27242699

ABSTRACT

Salmonella enterica and Escherichia coli can inhabit humans and animals from multiple origins. These bacteria are often associated with gastroenteritis in animals, being a frequent cause of resistant zoonotic infections. In fact, bacteria from animals can be transmitted to humans through the food chain and direct contact. In this study, we aimed to assess the antibiotic susceptibility of a collection of S. enterica and E. coli recovered from animals of different sources, performing a genomic comparison of the plasmid-mediated quinolone resistance (PMQR)-producing isolates detected. Antibiotic susceptibility testing revealed a high number of non-wild-type isolates for fluoroquinolones among S. enterica recovered from poultry isolates. In turn, the frequency of non-wild-type E. coli to nalidixic acid and ciprofloxacin was higher in food-producing animals than in companion or zoo animals. Globally, we detected two qnrS1 and two aac(6')-Ib-cr in E. coli isolates recovered from animals of different origins. The genomic characterization of QnrS1-producing E. coli showed high genomic similarity (O86:H12 and ST2297), although they have been recovered from a healthy turtle dove from a Zoo Park, and from a dog showing symptoms of infection. The qnrS1 gene was encoded in a IncN plasmid, also carrying bla TEM-1-containing Tn3. Isolates harboring aac(6')-Ib-cr were detected in two captive bottlenose dolphins, within a time span of two years. The additional antibiotic resistance genes of the two aac(6')-Ib-cr-positive isolates (bla OXA-1, bla TEM-1,bla CTX-M-15, catB3, aac(3)-IIa, and tetA) were enclosed in IncFIA plasmids that differed in a single transposase and 60 single nucleotide variants. The isolates could be assigned to the same genetic sublineage-ST131 fimH30-Rx (O25:H4), confirming clonal spread. PMQR-producing isolates were associated with symptomatic and asymptomatic hosts, which highlight the aptitude of E. coli to act as silent vehicles, allowing the accumulation of antibiotic resistance genes, mobile genetic elements and other relevant pathogenicity determinants. Continuous monitoring of health and sick animals toward the presence of PMQR should be strongly encouraged in order to restrain the clonal spread of these antibiotic resistant strains.

SELECTION OF CITATIONS
SEARCH DETAIL
...