Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 157: 111362, 2022 07.
Article in English | MEDLINE | ID: mdl-35761624

ABSTRACT

The quality evaluation and physicochemical parameters assessment of Portuguese monofloral honeys were performed. Fifty-one monofloral honeys were collected from several regions from mainland Portugal, and from the Azores islands, producer labelled as carob tree (n = 5), chestnut (n = 2), eucalyptus (n = 5), bell heather (n = 6), incense (n = 4), lavender (n = 8), orange (n = 9), rape (n = 2), raspberry (n = 2), rosemary (n = 1), sunflower (n = 3), and strawberry tree (n = 4). Pollen analysis and microbiological safety were evaluated, and the parameters such as colour index, moisture content, electrical conductivity, hydroxymethylfurfural, pH, free and total acidity, diastase activity, proline, and sugar profile were assessed for physicochemical characterization, in all 51 monofloral honeys. After melissopalynological examination, the honeys were either confirmed as monofloral, or classified as multifloral with predominance of a specific pollen type or multifloral. Microbiological analysis showed that honeys were safe for human consumption. Pairwise comparisons of physicochemical parameters, using only honey types with n ≥ 3, revealed significant differences between honey types. Despite some homogeneity in sugar profile among honeys, eucalyptus honey was significantly different in glucose, maltose and maltulose content compared to incense, orange and sunflower honeys, and also exhibited a higher isomaltose amount compared to all analyzed honeys. Electrical conductivity, colour index, free and total acidity, and diastase activity showed significant differences between the analyzed honeys, indicating that these parameters may provide an additional tool in monofloral honey identification.


Subject(s)
Eucalyptus , Honey , Amylases , Eucalyptus/chemistry , Glucose/analysis , Honey/analysis , Pollen/chemistry , Portugal
3.
Biomacromolecules ; 7(4): 1090-5, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16602725

ABSTRACT

The interaction of covalently cross-linked double-stranded (ds) DNA gels and cetyltrimethylammonium bromide (CTAB) is investigated. The volume transition of the gels that follows the absorption of the oppositely charged surfactant from aqueous solution is studied. As do other polyelectrolyte networks, DNA networks form complexes with oppositely charged surfactant micelles at surfactant concentrations far below the critical micelle concentration (cmc) of the polymer-free solution. The size of the absorbed surfactant aggregates is determined from time-resolved fluorescence quenching (TRFQ). At low surfactant concentrations, small discrete micelles (160 < N < 210) are found, whereas large micelles (N > 500) form at surfactant concentrations of 1 mM. When the DNA is in excess of the surfactant, the surfactant binding is essentially quantitative. The gel volume decreases by 90% when the surfactant to DNA charge ratio, beta, increases from 0 to 1.


Subject(s)
DNA/chemistry , Surface-Active Agents/chemistry , Animals , Binding Sites , Cations/chemistry , Gels/chemistry , Male , Salmon , Surface Properties , Testis/chemistry , Time Factors
4.
Langmuir ; 21(23): 10492-6, 2005 Nov 08.
Article in English | MEDLINE | ID: mdl-16262311

ABSTRACT

The interaction of the trivalent lanthanides Ce(III), Eu(III), and Tb(III) with sodium deoxyribonucleic acid (DNA) in aqueous solution has been studied using their luminescence spectra and decays. Complexation with DNA is indicated by changes in luminescence intensity. In the system terbium(III)-DNA, changes in luminescence with pH are suggested to be due to the protonation of phosphate groups. The degree of hydration of Tb(III) on binding to DNA is followed by luminescence lifetime measurements in water and deuterium oxide solutions, and it is found that the lanthanide ion loses at least one hydration water on binding to long double stranded DNA at pH 4.7 and pH 7. Rather different behavior is observed on binding to long or short single stranded DNA, where six water molecules are lost, independent of pH. It is suggested that in this case the lanthanide probably binds to the bases of the DNA backbone. The DNA conformation seems to be an important factor in the binding. In addition, the isotopic effect on terbium luminescence lifetime may provide a useful method to distinguish between single and double stranded DNA. DSC results are consistent with cleavage of the double helix of DNA at pH 9 in the presence of terbium.


Subject(s)
DNA/chemistry , Lanthanoid Series Elements/chemistry , Water/chemistry , Solutions
5.
Biochemistry ; 28(22): 8921-8, 1989 Oct 31.
Article in English | MEDLINE | ID: mdl-2605233

ABSTRACT

The temperature dependence of octyl glucoside micellization was determined and compared to the phase behavior of the octyl glucoside--egg phosphatidylcholine (PC) mixed system in excess water to help elucidate the process of vesicle formation from mixed surfactant-phospholipid micelles. The critical micelle concentration of octyl glucoside (OG) was determined from the sharp increase of ANS fluorescence at micellization in an NaCl buffer at temperatures ranging from 5 to 40 degrees C. The cmc decreased with increasing temperature from 31 mM at 5 degrees C to 16 mM at 40 degrees C. A similar but less steep temperature dependence is observed for the solubilization of egg PC vesicles by OG as monitored by the surfactant-dependent changes in (1) solution turbidity and (2) the resonance energy transfer between NBD-PE and Rho-PE incorporated in the vesicles. These assays identify two breakpoints, most likely the boundaries of the cylindrical micelle and spheroidal micelle coexistence region. The [OG]aq values at these two breakpoints have similar temperature dependencies. However, the cylindrical mixed micelles at the boundary have nearly identical OG:PC ratios over the temperature range studied, whereas the spheroidal mixed micelles have relatively more OG at the higher temperatures (OG:PC ratio increases from 2.92 to 3.72 between 5 and 35 degrees C). Estimation of the acyl volume to surface area ratio for the compositions observed suggests that this parameter remains constant over temperature. The spheroidal mixed micelles, but not the cylindrical PC-OG micelles, exhibit ideal mixing between the two components at all temperatures (5-35 degrees C). This temperature sensitivity may be utilized to improve the efficacy of membrane protein reconstitution.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Colloids , Detergents , Glucosides , Glycosides , Micelles , Phosphatidylcholines , Surface-Active Agents , Temperature , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...