Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Toxicon ; 166: 39-45, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31091423

ABSTRACT

A comparative venom proteomic analysis of the Brazilian southern coral snake, M. frontalis, the Amazon coral snake M. spixii spixii, and the aquatic coral snake M. surinamensis is reported. Venoms from M. frontalis and M. s. spixii were composed mainly (>90% of the total venom proteome) by 3FTxs and PLA2s in different proportions, and minor proteins from 2 to 5 protein families. Conversely, the aquatic coral snake expressed a streamlined (95%) 3FTx venom with low abundance (4.2%) of PLA2 molecules. A compositional-lethal activity for natural prey correlation analysis suggests that M. surinamensis venom may has evolved under strong pressure to quickly immobilize aquatic prey. On the other hand, venoms from M. frontalis and M. s. spixii, whose diet consist mainly of amphisbaenians and colubrid snakes, may have been shaped through balancing selection. Our work provides strong evidence for the occurrence in M. frontalis venom, but not in those from M. s. spixi and M. surinamensis, of a KUN-PLA2 complex homologue to heterodimeric venom toxins from some long-tailed monadal coral snakes that target acid-sensing receptors ASIC1a/2 evoking pain. The M. frontalis protein would represent the first example of a KUN-PLA2 heterodimer in a South American short-tailed triadal coral snake venom.


Subject(s)
Coral Snakes , Elapid Venoms/chemistry , Proteomics , Animals , Biological Evolution , Brazil , Elapid Venoms/toxicity , Phospholipases A2/chemistry , Predatory Behavior , Toxins, Biological/chemistry
2.
Biol Res ; 43(2): 233-41, 2010.
Article in English | MEDLINE | ID: mdl-21031268

ABSTRACT

The genus Phytomonas comprises trypanosomatids that can parasitize a broad range of plant species. These flagellates can cause diseases in some plant families with a wide geographic distribution, which can result in great economic losses. We have demonstrated previously that Phytomonas serpens 15T, a tomato trypanosomatid, shares antigens with Trypanosoma cruzi, the agent of human Chagas disease. Herein, two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) were used to identify proteins of P. serpens 15T that are recognized by sera from patients with Chagas disease. After 2D-electrophoresis of whole-cell lysates, 31 peptides were selected and analyzed by tandem mass spectrometry. Twenty-eight polypeptides were identified, resulting in 22 different putative proteins. The identified proteins were classified into 8 groups according to biological process, most of which were clustered into a cellular metabolic process category. These results generated a collection of proteins that can provide a starting point to obtain insights into antigenic cross reactivity among trypanosomatids and to explore P. serpens antigens as candidates for vaccine and immunologic diagnosis studies.


Subject(s)
Antigens, Protozoan/immunology , Chagas Disease/immunology , Leishmania/immunology , Solanum lycopersicum/parasitology , Trypanosoma cruzi/immunology , Animals , Antigens, Protozoan/isolation & purification , Cross Reactions , Electrophoresis, Gel, Two-Dimensional , Enzyme-Linked Immunosorbent Assay , Humans , Mass Spectrometry
3.
Biol. Res ; 43(2): 233-241, 2010. ilus
Article in English | LILACS | ID: lil-567538

ABSTRACT

The genus Phytomonas comprises trypanosomatids that can parasitize a broad range of plant species. These fagellates can cause diseases in some plant families with a wide geographic distribution, which can result in great economic losses. We have demonstrated previously that Phytomonas serpens 15T, a tomato trypanosomatid, shares antigens with Trypanosoma cruzi, the agent of human Chagas disease. Herein, two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) were used to identify proteins of P. serpens 15T that are recognized by sera from patients with Chagas disease. After 2D-electrophoresis of whole-cell lysates, 31 peptides were selected and analyzed by tandem mass spectrometry. Twenty-eight polypeptides were identifed, resulting in 22 different putative proteins. The identifed proteins were classifed into 8 groups according to biological process, most of which were clustered into a cellular metabolic process category. These results generated a collection of proteins that can provide a starting point to obtain insights into antigenic cross reactivity among trypanosomatids and to explore P. serpens antigens as candidates for vaccine and immunologic diagnosis studies.


Subject(s)
Animals , Humans , Antigens, Protozoan/immunology , Chagas Disease/immunology , Leishmania/immunology , Solanum lycopersicum/parasitology , Trypanosoma cruzi/immunology , Antigens, Protozoan/isolation & purification , Cross Reactions , Electrophoresis, Gel, Two-Dimensional , Enzyme-Linked Immunosorbent Assay , Mass Spectrometry
4.
FEMS Immunol Med Microbiol ; 52(1): 47-58, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18031539

ABSTRACT

Prostaglandins are known to be produced by macrophages when challenged with Trypanosoma cruzi, the etiological agent of Chagas' disease. It is not known whether these lipid mediators play a role in oxidative stress in host defenses against this important protozoan parasite. In this study, we demonstrated that inducible cyclooxygenase-mediated prostaglandin production is a key chemical mediator in the control of parasite burden and erythrocyte oxidative stress during T. cruzi infection in C57BL/6 and BALB/c mice, prototype hosts for the study of resistance and susceptibility in murine Chagas' disease. The results suggested the existence of at least two mechanisms of oxidative stress, dependent or independent with regard to the nitric oxide and cyclooxygenase pathway, where one or the other is more evident depending on the mouse strain.


Subject(s)
Anemia/parasitology , Chagas Disease/immunology , Cyclooxygenase Inhibitors/pharmacology , Oxidative Stress/immunology , Trypanosoma cruzi/immunology , Animals , Blood/parasitology , Blood Cell Count , Chagas Disease/parasitology , Chagas Disease/pathology , Hematocrit , Hemoglobins/analysis , Macrophages/chemistry , Macrophages/parasitology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Nitric Oxide/analysis , Prostaglandins/immunology , Prostaglandins/metabolism , Survival Analysis , Trypanosoma cruzi/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...