Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 237(5): 1810-1825, 2023 03.
Article in English | MEDLINE | ID: mdl-36451537

ABSTRACT

Plant-specialized metabolism is complex, with frequent examples of highly branched biosynthetic pathways, and shared chemical intermediates. As such, many plant-specialized metabolic networks are poorly characterized. The N-methyl Δ1 -pyrrolinium cation is a simple pyrrolidine alkaloid and precursor of pharmacologically important tropane alkaloids. Silencing of pyrrolidine ketide synthase (AbPyKS) in the roots of Atropa belladonna (Deadly Nightshade) reduces tropane alkaloid abundance and causes high N-methyl Δ1 -pyrrolinium cation accumulation. The consequences of this metabolic shift on alkaloid metabolism are unknown. In this study, we utilized discovery metabolomics coupled with AbPyKS silencing to reveal major changes in the root alkaloid metabolome of A. belladonna. We discovered and annotated almost 40 pyrrolidine alkaloids that increase when AbPyKS activity is reduced. Suppression of phenyllactate biosynthesis, combined with metabolic engineering in planta, and chemical synthesis indicates several of these pyrrolidines share a core structure formed through the nonenzymatic Mannich-like decarboxylative condensation of the N-methyl Δ1 -pyrrolinium cation with 2-O-malonylphenyllactate. Decoration of this core scaffold through hydroxylation and glycosylation leads to mono- and dipyrrolidine alkaloid diversity. This study reveals the previously unknown complexity of the A. belladonna root metabolome and creates a foundation for future investigation into the biosynthesis, function, and potential utility of these novel alkaloids.


Subject(s)
Alkaloids , Atropa belladonna , Atropa belladonna/metabolism , Alkaloids/metabolism , Tropanes/chemistry , Tropanes/metabolism , Pyrrolidines/metabolism
2.
Nat Commun ; 13(1): 3832, 2022 07 02.
Article in English | MEDLINE | ID: mdl-35780230

ABSTRACT

Plant alkaloids constitute an important class of bioactive chemicals with applications in medicine and agriculture. However, the knowledge gap of the diversity and biosynthesis of phytoalkaloids prevents systematic advances in biotechnology for engineered production of these high-value compounds. In particular, the identification of cytochrome P450s driving the structural diversity of phytoalkaloids has remained challenging. Here, we use a combination of reverse genetics with discovery metabolomics and multivariate statistical analysis followed by in planta transient assays to investigate alkaloid diversity and functionally characterize two candidate cytochrome P450s genes from Atropa belladonna without a priori knowledge of their functions or information regarding the identities of key pathway intermediates. This approach uncovered a largely unexplored root localized alkaloid sub-network that relies on pseudotropine as precursor. The two cytochrome P450s catalyze N-demethylation and ring-hydroxylation reactions within the early steps in the biosynthesis of diverse N-demethylated modified tropane alkaloids.


Subject(s)
Alkaloids , Tropanes , Alkaloids/chemistry , Cytochrome P-450 Enzyme System/genetics , Metabolomics , Tropanes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...