Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Foods ; 13(2)2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38275704

ABSTRACT

The aim of this study was to compare the biological properties, such as antiviral, antibacterial, and antioxidant, of recently described pentaploid species Rubus oklejewiczii with tetraploid taxa growing in similar habitats including R. plicatus, R. gracilis, and R. wimmerianus. The antiviral potential was analyzed against bacteriophages with different genetic material: phi6 (a surrogate for the SARS-CoV-2 virus), T7, phiX174, and MS2. Antibacterial properties of fruit and leaf extracts were determined against Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Salmonella enterica. The total phenolic content, as well as anthocyanins, ascorbic acid, pH, and antioxidant properties (FRAP and DPPH) were determined. R. oklejewiczii leaf extract was characterized by the weakest antibacterial and antiviral properties, which was closely correlated with the lowest content of polyphenolic compounds and antioxidant properties. The strongest biological properties were observed for R. wimmerianus leaves. Fruit extracts were characterized by lower phenolic content and antioxidant activities than leaves, with the lowest values observed for R. oklejewiczii extract. The antibacterial properties of fruit extracts were strongest for R. gracilis. The strongest antiviral potential was observed for R. oklejewiczii and R. wimmerianus fruit extracts against the bacteriophage phi6, which correlated with the lowest pH and the highest ascorbic acid content. The positive effect of the higher ploidy of R. oklejewiczii for most of the analyzed biological properties was not observed except for the antiviral potential of fruit extract. Due to its large and tasty fruits, this species seems to be very promising for cultivation and attractive for consumers, even though most of its biological properties were not any better compared to other examined tetraploid species.

2.
Antibiotics (Basel) ; 12(11)2023 Nov 19.
Article in English | MEDLINE | ID: mdl-37998842

ABSTRACT

Streptococcus mutans is considered the main pathogen responsible for dental caries, one of the major infectious diseases, affecting more than 4 billion people worldwide. Honey is a natural product with well-known antibacterial potential against several human pathogens. The aim of the study was to evaluate the antibacterial efficacy of Polish honey against S. mutans and analyze the role of some bioactive substances on its antibacterial action. The antibacterial potential of different honey varieties (goldenrod, buckwheat, honeydew, and lime) was analyzed using a microdilution assay. Manuka and artificial honey were used as controls. The content of GOX, hydrogen peroxide, total polyphenols, and antioxidant potential was assayed in honey. The influence of catalase and proteinase K on antibacterial activity as well as antibiofilm action was also determined. The strongest antibacterial activity was observed for buckwheat, honeydew, and manuka honey, which were also characterized by the highest antioxidant activity and polyphenols content. Catalase treatment decreases the antibacterial activity of honey, while proteinase K treatment influences the antibacterial potential of honey slightly less. Obtained results suggest that honey can be a good natural product against S. mutans, and hydrogen peroxide was identified as a crucial contributor to its antimicrobial action.

3.
J Biol Eng ; 17(1): 19, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36879267

ABSTRACT

BACKGROUND: Birch is a tree with a common occurrence in the environment and its organs are used in the form of herbal material. An important aspect of this study is birch pollen, which is a problem for allergy sufferers, and due to a variety of environmental conditions, its allergenicity may increase. Among the organs studied, inflorescences deserve attention, which, as seen from an overview of the literature, are analysed for the content of heavy metals for the first time in this study. RESULTS: This paper investigated the relationship between antioxidant properties and the content of heavy metals (Cu, Zn, Cd, Pb, Ni and Cr) as the plant's response to stress, taking into account both the vegetative and generative organs of the tree Betula pendula. While studying the accumulation of elements in individual organs, the research was extended to include the aspect of different environmental conditions, reflected in two soil types of differing physicochemical properties: sandy and silty soils. In order to thoroughly analyse the transport of the studied heavy metals from the soil to individual organs (leaves, inflorescences and pollen), ecotoxicological indicators were used. A modified translocation factor (TF) index into sTF (sap translocation factor) was presented as a novelty in research, calculated based on the content of selected heavy metals in the sap flowing to individual birch organs. This allowed for a more complete description of the transport of elements in the aerial parts of plants, indicating the accumulation of zinc and cadmium, especially in leaves. Among the studied environmental conditions which may affect the accumulation of heavy metals, sandy soil is of particular significance, conditioning lower pH values, among other things. However, analysis of the reaction of birch to the conditions of the soil environment and the content of heavy metals, based on antioxidant properties, demonstrated an evident reaction to stress, but without an unambiguous response among the studied vegetative and generative organs. CONCLUSIONS: As birch is a plant with wide utility values, monitoring studies are advisable to exclude the risk of accumulation of heavy metals in its organs, and for this purpose it may be useful to use the sTF indicator and assess the antioxidant potential.

4.
Molecules ; 27(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35956811

ABSTRACT

The aim of this study was to investigate the effect of blackberry and raspberry fruits (1 and 4%) and leaves (0.5 and 1%) on the biological activities of rape honey. Honey and plant material extracts were analyzed regarding total phenolic, flavonoid, anthocyanin contents, HPTLC and HPLC polyphenol profiles, as well as antioxidant activity. The antiviral potential was analyzed against bacteriophage phi 6-a coronavirus surrogate-whereas antimicrobial was tested against S. aureus and E. coli. Blackberry extracts were more abundant in antioxidants than raspberry extracts, with better properties found for leaves than fruits and for cultivated rather than commercial plants. The addition of both Rubus plant additives significantly increased the antioxidant potential of honey by four-fold (for 4% fruits additive) to five-fold (for 1% of leaves). Honey with the addition of fruits possessed higher antiviral potential compared with raw rape honey (the highest for 4% of raspberry fruit and 1% of blackberry leaf additive). Honey enriched with Rubus materials showed higher antibacterial potential against S. aureus than rape honey and effectively inhibited S. aureus biofilm formation. To summarize, honey enriched with Rubus fruit or leaves are characterized by increased pro-health value and can be recommended as a novel functional food.


Subject(s)
Honey , Rubus , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Antiviral Agents/pharmacology , Escherichia coli , Fruit , Functional Food , Plant Extracts/pharmacology , Staphylococcus aureus
5.
Molecules ; 27(9)2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35566113

ABSTRACT

Juglans regia L., walnut, is a large, long-living tree, cultivated in temperate climates around the world. It is highly appreciated for its nutritional kernels and high-quality timber. Its barks, leaves, and husk are used as dyes and in folk medicine as herbal remedies for several diseases. From a biological and chemical standpoint, relatively little is known about the male flowers of the tree. Therefore, the aim of the study was to evaluate the phenolic profile as well as in vitro antioxidant, antimicrobial, and antiproliferative activity of male Juglans regia L. flowers. Phenolic content was determined by UPLC/PDA/MS/MS analyses; antioxidant activity was assessed by five different methods; antimicrobial activity was evaluated against the six most common pathogenic strains of Gram-positive and Gram-negative bacteria, and antiproliferative properties were assessed against six cell lines. Most of the analyses carried out in this study were performed for the first time for this raw material. J. regia flower extract was characterized by a strong ability to scavenge DPPH˙ free radicals, hydroxyl radicals, and chelating metal ions. Among the examined bacterial strains and neoplastic lines, the strongest antimicrobial activity was shown against S. aureus, L. monocytogenes, and B. cereus, and cytotoxic activity against breast cancer, glioblastoma, and astrocytoma cells. Male J. regia flowers have also been found to be a rich source of phenolic compounds. The content of polyphenols in the extract was 4369.73 mg/100 g d.w., and 24 compounds from the group of flavonoids, phenolic acids, and juglunosides were identified. Additionally, a strong correlation between the content of polyphenols and the antioxidant capacity and cytotoxic activity was observed. This is why the tested J. regia flowers are an excellent source of effective natural antioxidant, antibacterial, and chemopreventive compounds that have potential to be used in the pharmaceutical or food industries.


Subject(s)
Anti-Infective Agents , Juglans , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Flowers/chemistry , Gram-Negative Bacteria , Gram-Positive Bacteria , Juglans/chemistry , Phenols/analysis , Phenols/pharmacology , Plant Extracts/chemistry , Polyphenols/chemistry , Staphylococcus aureus , Tandem Mass Spectrometry
6.
Food Funct ; 12(19): 8920-8931, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34606549

ABSTRACT

The effect of adding the chokeberry fruit additive to rape honey was studied with regard to the physicochemical properties and biological activity. Two samples of dried powdered fruits were used to enrich the honey (1 and 4% v/v) during creaming. The obtained products were characterized in terms of sugar content, acidity, conductivity, total phenolic, flavonoid and anthocyanin contents and HPTLC polyphenol profiles. The antioxidant properties of enriched honeys were studied in vitro (FRAP, DPPH, and ABTS) and in vivo using a S. cerevisiae model. The inhibitory effect against 5 bacterial strains and coronavirus surrogate bacteriophage phi6 was tested. The addition of chokeberry significantly modified the physicochemical properties of honey and enhanced its antioxidant potential (from 3 to 15 times). Using HPTLC analysis, the occurrence of flavonoids, phenolic acids, and anthocyanins in chokeberry enriched honey was determined. The modified honey protected yeast cells against H2O2-induced oxidative stress when used as a pretreatment agent. All tested bacteria were susceptible to enriched honey in a dose-dependent manner. The antiviral potential of enriched honey against the model bacteriophage was discovered for the first time. In terms of numerous health benefits determined, honey enriched with Aronia melanocarpa fruits can be considered as an interesting novel functional food, which may increase the consumption of chokeberry superfruits.


Subject(s)
Fruit , Functional Food , Honey , Photinia , Plant Extracts/chemistry , Anti-Bacterial Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Biphenyl Compounds/chemistry , Humans , Picrates/chemistry , Plant Extracts/pharmacology , Saccharomyces cerevisiae/drug effects
7.
Molecules ; 23(8)2018 Aug 18.
Article in English | MEDLINE | ID: mdl-30126199

ABSTRACT

Honey variety is commonly defined by beekeepers based on nectar flow availability and the only laboratory method to provide verification is the melissopalynological analysis. Therefore, a quick and simple method for accurate assessment of honey variety is still being researched. The aim of the study was to evaluate the antioxidant activity of honey as an indicator of variety through the use of multivariate statistical analysis. Materials for the study consisted of 90 samples of varietal Polish honeys (rape-12, tilia-10, goldenrod-11, dandelion-5, buckwheat-6, multifloral-17, nectar-honeydew-8 and coniferous honeydew-16 and leafy honeydew-5) obtained directly from apiaries. Honeys were investigated in aspect of antioxidant capacity by photochemiluminescence (PCL) methods using standard ACW and ACL kits. As the reference FRAP and DPPH methods were used. The total phenolics content (TPC) was determined through the Folin-Ciocalteu method. The strongest antioxidant activity was found for buckwheat, while the weakest was found for rape honeys regardless of the used method. Results of the used methods were positively correlated (r = 0.42 to 0.94). Analysis conducted by PCL method confirmed that the minor fraction of honey antioxidants exhibits hydrophobic properties. Clear separation of honey varieties using PCA and Clustering method indicate that antioxidant activity can be a useful parameter for determining the botanical origin of honey.


Subject(s)
Antioxidants/chemistry , Antioxidants/pharmacology , Honey/analysis , Biomarkers , Hydrophobic and Hydrophilic Interactions , Phenols/chemistry , Phenols/pharmacology , Poland
8.
FEMS Yeast Res ; 18(2)2018 03 01.
Article in English | MEDLINE | ID: mdl-29438555

ABSTRACT

Lignocellulosic biomass belongs to main sustainable renewable sources for global energy supply. One of the main challenges in the conversion of saccharified lignocellulosic biomass into bioethanol is the utilization of xylose, since lignocellulosic feedstocks contain a significant amount of this pentose. The non-conventional thermotolerant yeast Ogataea polymorpha naturally ferments xylose to ethanol at elevated temperatures (45°C). Studying the molecular mechanisms of regulation of xylose metabolism is a promising way toward increased xylose conversion to ethanol. Insertional mutagenesis was applied to yeast O. polymorpha to identify genes involved in regulation of xylose fermentation. An insertional mutant selected as 3-bromopyruvate resistant strain possessed 50% increase in ethanol production as compared to the parental strain. Increase in ethanol production was caused by disruption of an autophagy-related gene ATG13. Involvement of Atg13 in regulation of xylose fermentation was confirmed by deletion of that gene. The atg13Δ strain also produced an elevated amount of ethanol from xylose. Insertion in ATG13 gene did not disrupt HORMA domain and did not lead to defects in autophagy whereas knock out of this gene impaired autophagy process. We suggest that Atg13 plays two different functions and its role in regulation of xylose fermentation differs from that in autophagy.


Subject(s)
Ascomycota/physiology , Autophagy-Related Proteins/genetics , Ethanol/metabolism , Fermentation , Fungal Proteins/genetics , Xylose/metabolism , Autophagy , Autophagy-Related Proteins/metabolism , Fungal Proteins/metabolism , Gene Order , Genetic Vectors/genetics , Metabolic Engineering , Mutation , Pichia/physiology
9.
J Environ Sci Health B ; 48(12): 1089-96, 2013.
Article in English | MEDLINE | ID: mdl-24007486

ABSTRACT

Seventeen natural sweeteners available on the Polish market were screened for total phenolic content, by the Folin-Ciocalteu method, and for antioxidant activity, using the ferric reducing antioxidant power (FRAP) assay and the 2,2'-Azinobis (3-ethylbenzthiazoline-6-sulphonic acid) radical cation decolorization assay (ABTS(·+)). In addition, we analyzed antibacterial activities against Staphylococcus aureus strains: both those susceptible and those resistant to methicillin (MRSA). The results of the study showed that total phenolic content, antioxidant activity and antibacterial activity differ widely among different samples of sweeteners. Phenolic content, expressed as a gallic acid equivalent, ranged from 0 mg kg(-1) in white, refined sugar, xylitol and wheat malt syrup to 11.4 g kg(-1) in sugarcane molasses. Antioxidant activity was lowest in refined white sugar, xylitol, brown beet sugar, liquid fructose, and rape honey; it was average in spelt syrup and corn syrup, and highest in sugar cane, beet molasses, date and barley syrups. Despite the great variety of sweeteners, a strong correlation was noted between the concentration of phenolics and antioxidant properties, as determined by the ABTS(·+) method (r = 0.97) and the FRAP assay (r = 0.77). The strongest antibacterial activity was observed in sugarcane molasses, which was lethal to S. aureus strains at 2 and 4% concentrations in medium for susceptible and MRSA strains respectively. Other sweeteners kill bacteria in 6-15% solutions, whereas some did not show any antibacterial activities against S. aureus strains, even at 20% concentrations. Due to their high antioxidant and antibacterial activities, some of the tested sweeteners have potential therapeutic value as supporting agents in antibiotic therapy.


Subject(s)
Anti-Bacterial Agents/analysis , Antioxidants/analysis , Phenols/analysis , Plant Extracts/chemistry , Plants/chemistry , Sweetening Agents/chemistry , Microbial Sensitivity Tests , Poland , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development
10.
Postepy Biochem ; 59(1): 95-106, 2013.
Article in Polish | MEDLINE | ID: mdl-23821948

ABSTRACT

Methylotrophic yeasts are unique eukaryotic organisms, that can metabolize toxic one-carbon substrate, methyl alcohol or methanol. About 50 species of methylotrophic yeasts is known, among them 4 species are the best studied: Pichia methanolica, Hansenula polymorpha, Pichia pastoris i Candida boidinii. These organisms, especially P. pastoris i H. polymorpha appeared to be very perspective overproducers of heterologous proteins and nowadays are used for industrial production of some of them. In this review, we provide information on the organization of the genome, mechanisms of regulation of gene expression and the use of strong promoters of these yeast species to construct the producers of heterologous proteins. In more details, we analyze genetic control of carbon and nitrogen catabolic repression in H. polymorpha and also the identification of metabolites inducing catabolite repression or peroxisome selective autophagy in the medium with ethanol in the Pichia methanolica yeast.


Subject(s)
Fungal Proteins/biosynthesis , Gene Expression Regulation, Fungal/genetics , Yeasts/genetics , Metabolism/genetics , Methanol/metabolism , Species Specificity , Yeasts/classification
11.
J Ind Microbiol Biotechnol ; 38(11): 1853-9, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21528412

ABSTRACT

The ability of baker's yeast Saccharomyces cerevisiae and of the thermotolerant methylotrophic yeast Hansenula polymorpha to produce ethanol during alcoholic fermentation of glucose was compared between wild-type strains and recombinant strains possessing an elevated level of intracellular glutathione (GSH) due to overexpression of the first gene of GSH biosynthesis, gamma-glutamylcysteine synthetase, or of the central regulatory gene of sulfur metabolism, MET4. The analyzed strains of H. polymorpha with an elevated pool of intracellular GSH were found to accumulate almost twice as much ethanol as the wild-type strain during glucose fermentation, in contrast to GSH1-overexpressing S. cerevisiae strains, which also possessed an elevated pool of GSH. The ethanol tolerance of the GSH-overproducing strains was also determined. For this, the wild-type strain and transformants with an elevated GSH pool were compared for their viability upon exposure to exogenous ethanol. Unexpectedly, both S. cerevisiae and H. polymorpha transformants with a high GSH pool proved more sensitive to exogenous ethanol than the corresponding wild-type strains.


Subject(s)
Ethanol/metabolism , Fermentation , Glutathione/biosynthesis , Pichia/metabolism , Saccharomyces cerevisiae/metabolism , Glucose/metabolism , Glutamate-Cysteine Ligase/genetics , Glutamate-Cysteine Ligase/metabolism , Pichia/genetics , Saccharomyces cerevisiae/genetics , Xylose/metabolism
12.
J Ind Microbiol Biotechnol ; 33(11): 934-40, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16775686

ABSTRACT

A new method for the selection of Pichia stipitis and Hansenula polymorpha yeast mutants with altered capability to ferment xylose to ethanol was developed. The method is based on the ability of P. stipitis and H. polymorpha colonies to grow and produce ethanol on agar plates with xylose as the sole carbon and energy source. Secreted ethanol, in contrast to xylose, supports growth of cells of the indicator xylose-negative strains (the wild-type strain of Saccharomyces cerevisiae or Deltaxyl1 mutant of H. polymorpha) mixed with agar medium. The size of the tester culture-growth zone around xylose-grown colonies appeared to be dependent on the amount of secreted ethanol. Mutants with altered (decreased or elevated) ethanol production in xylose medium have been isolated using this method. The mutants exhibited pleiotropic alterations in enzymatic activities of the intermediary xylose metabolism.


Subject(s)
Ethanol/metabolism , Mutation , Pichia/enzymology , Pichia/genetics , Xylose/metabolism , Culture Media , Fermentation , Microbiological Techniques , Mutagenesis, Insertional , Pichia/growth & development , Pichia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...