Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Leukemia ; 29(10): 2086-97, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26017032

ABSTRACT

Acute myeloid leukemia (AML) occurs when multiple genetic aberrations alter white blood cell development, leading to hyperproliferation and arrest of cell differentiation. Pertinent animal models link in vitro studies with the use of new agents in clinical trials. We generated a transgenic zebrafish expressing human NUP98-HOXA9 (NHA9), a fusion oncogene found in high-risk AML. Embryos developed a preleukemic state with anemia and myeloid cell expansion, and adult fish developed a myeloproliferative neoplasm (MPN). We leveraged this model to show that NHA9 increases the number of hematopoietic stem cells, and that oncogenic function of NHA9 depends on downstream activation of meis1, the PTGS/COX pathway and genome hypermethylation through the DNA methyltransferase, dnmt1. We restored normal hematopoiesis in NHA9 embryos with knockdown of meis1 or dnmt1, as well as pharmacologic treatment with DNA (cytosine-5)-methyltransferase (DNMT) inhibitors or cyclo-oxygenase (COX) inhibitors. DNMT inhibitors reduced genome methylation to near normal levels. Strikingly, we discovered synergy when we combined sub-monotherapeutic doses of a histone deacetylase inhibitor plus either a DNMT inhibitor or COX inhibitor to block the effects of NHA9 on zebrafish blood development. Our work proposes novel drug targets in NHA9-induced myeloid disease, and suggests rational therapies by combining minimal doses of known bioactive compounds.


Subject(s)
Embryo, Nonmammalian/drug effects , Epigenesis, Genetic/drug effects , Hematopoiesis/physiology , Histone Deacetylase Inhibitors/therapeutic use , Homeodomain Proteins/genetics , Leukemia, Myeloid, Acute/prevention & control , Myeloproliferative Disorders/prevention & control , Nuclear Pore Complex Proteins/genetics , Oncogene Proteins, Fusion/genetics , Adult , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/metabolism , Biomarkers, Tumor/antagonists & inhibitors , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Cells, Cultured , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Gene Expression Profiling , Hematopoiesis/drug effects , Humans , In Situ Hybridization , Leukemia, Myeloid, Acute/etiology , Leukemia, Myeloid, Acute/pathology , Myeloproliferative Disorders/etiology , Myeloproliferative Disorders/pathology , Oligonucleotide Array Sequence Analysis , Phenotype , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Transgenes/genetics , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/genetics
2.
Adv Hematol ; 2012: 541471, 2012.
Article in English | MEDLINE | ID: mdl-22737171

ABSTRACT

Starting as a model for developmental genetics, embryology, and organogenesis, the zebrafish has become increasingly popular as a model organism for numerous areas of biology and biomedicine over the last decades. Within haematology, this includes studies on blood cell development and function and the intricate regulatory mechanisms within vertebrate immunity. Here, we review recent studies on the immediate mechanisms mounting an inflammatory response by in vivo analyses using the zebrafish. These recently revealed novel roles of the reactive oxygen species hydrogen peroxide that have changed our view on the initiation of a granulocytic inflammatory response.

3.
Leukemia ; 25(3): 506-14, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21079614

ABSTRACT

Precise regulatory mechanisms are required to appropriately modulate the cellular levels of transcription factors controlling cell fate decisions during blood cell development. In this study, we show that miR-126 is a novel physiological regulator of the proto-oncogene c-myb during definitive hematopoiesis. We show that knockdown of miR-126 results in increased c-Myb levels and promotes erythropoiesis at the expense of thrombopoiesis in vivo. We further provide evidence that specification of thrombocyte versus erythrocyte cell lineages is altered by the concerted activities of the microRNAs (miRNAs) miR-126 and miR-150. Both miRNAs are required but not sufficient individually to precisely regulate the cell fate decision between erythroid and megakaryocytic lineages during definitive hematopoiesis in vivo. These results support the notion that miRNAs not only function to provide precision to developmental programs but also are essential determinants in the control of variable potential functions of a single gene during hematopoiesis.


Subject(s)
Hematopoiesis , MicroRNAs/physiology , Proto-Oncogene Proteins c-myb/physiology , Zebrafish/genetics , Animals , Base Sequence , Cell Lineage , Erythropoiesis , Molecular Sequence Data , Thrombopoiesis
4.
Gene ; 322: 57-66, 2003 Dec 11.
Article in English | MEDLINE | ID: mdl-14644497

ABSTRACT

We tested the Sleeping Beauty transposable element for its ability to efficiently insert transgenes into the genome of medaka (Oryzias latipes), an important model system for vertebrate development. We show that the SB transposon efficiently mediates integration of a reporter gene into the fish germ line. In pilot experiments, we established 174 transgenic lines with a transgenesis efficiency of 32%. Transgenes are stably transmitted to, and expressed in, subsequent generations. Interestingly, the transgenic lines show novel expression patterns with temporal and spatial specificity at a rate of 12% (21/174), likely due to both, enhancing and silencing position effects. Furthermore, promoter-dependent GFP expression in injected fish embryos is tightly correlated with germ line transmission, facilitating easy selection of founder fish. Thus, the SB transposon/transposase system provides a highly efficient tool for transgenesis in general and for the generation of novel reporter gene expression patterns in particular.


Subject(s)
DNA Transposable Elements/genetics , Mutagenesis, Insertional/methods , Oryzias/genetics , Animals , Animals, Genetically Modified , Base Sequence , Blotting, Southern , DNA/chemistry , DNA/genetics , Embryo, Nonmammalian/metabolism , Gene Expression Regulation, Developmental , Green Fluorescent Proteins , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microinjections , Microscopy, Fluorescence , Molecular Sequence Data , Oryzias/embryology , Plasmids/administration & dosage , Plasmids/genetics , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Analysis, DNA
5.
Development ; 128(20): 4035-44, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11641226

ABSTRACT

The complete absence of eyes in the medaka fish mutation eyeless is the result of defective optic vesicle evagination. We show that the eyeless mutation is caused by an intronic insertion in the Rx3 homeobox gene resulting in a transcriptional repression of the locus that is rescued by injection of plasmid DNA containing the wild-type locus. Functional analysis reveals that Six3- and Pax6- dependent retina determination does not require Rx3. However, gain- and loss-of-function phenotypes show that Rx3 is indispensable to initiate optic vesicle evagination and to control vesicle proliferation, by that regulating organ size. Thus, Rx3 acts at a key position coupling the determination with subsequent morphogenesis and differentiation of the developing eye.


Subject(s)
DNA-Binding Proteins/genetics , Drosophila Proteins , Eye/growth & development , Fish Proteins , Oryzias/growth & development , Oryzias/genetics , Retina/growth & development , Amino Acid Sequence , Animals , Base Sequence , DNA, Complementary/genetics , Eye Proteins/genetics , Gene Expression Regulation, Developmental , Genes, Homeobox , Homeodomain Proteins/genetics , Molecular Sequence Data , Mutation , Nerve Tissue Proteins/genetics , PAX6 Transcription Factor , Paired Box Transcription Factors , Repressor Proteins , T-Box Domain Proteins/genetics , Temperature , Homeobox Protein SIX3
SELECTION OF CITATIONS
SEARCH DETAIL
...