Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(7): e0235984, 2020.
Article in English | MEDLINE | ID: mdl-32658920

ABSTRACT

The stalk-eyed flies (Diopsidae, Diptera) are a family of approximately 100 species of calypterate dipterans, characterised by extended head capsules. Species within the family have previously been shown to possess six subfamilies of mariner transposons, with nucleotide substitution patterns suggesting that at least two subfamilies are currently active. The vertumnana subfamily has been shown to have been involved in a horizontal transfer event involving Diopsidae and a second dipteran family in the Tephritidae. Presented here are cloned and sequenced mariner elements from three further diopsid species, in addition to a bioinformatic analysis of mariner elements identified in transcriptomic and genomic data from the genus Teleopsis. The newly identified mariner elements predominantly fall into previously recognised subfamilies, however the publicly available Teleopsis data also revealed a novel subfamily. Three of the seven identified subfamilies are shown to have undergone horizontal transfer, two of which appear to involve diopsid donor species. One recipient group of a diopsid mariner is the Bactrocera genus of tephritid flies, the transfer of which was previously proposed in an earlier study of diopsid mariner elements. The second horizontal transfer, of the mauritiana subfamily, can be traced from the Teleopsis genus to the cnidarian Hydra vulgaris. The mauritiana elements are shown to be active in the recipient H. vulgaris and transposase expression is observed in all body tissues examined in both species. The increased diversity of diopsid mariner elements points to a minimum of four subfamilies being present in the ancestral genome. Both vertical inheritance and stochastic loss of TEs have subsequently occurred within the diopsid radiation. The TE complement of H. vulgaris contains at least two mariner subfamilies of insect origin. Despite the phylogenetic distance between donor and recipient species, both subfamilies are shown to be active and proliferating within H. vulgaris.


Subject(s)
DNA Transposable Elements , Diptera/genetics , Evolution, Molecular , Gene Transfer, Horizontal , Genome , Host-Pathogen Interactions/genetics , Insect Proteins/genetics , Animals , Diptera/classification , Eye/anatomy & histology , Eye/growth & development , Eye/metabolism , Hydra/physiology , Phylogeny
2.
Mob DNA ; 10: 44, 2019.
Article in English | MEDLINE | ID: mdl-31788034

ABSTRACT

BACKGROUND: Unicellular species make up the majority of eukaryotic diversity, however most studies on transposable elements (TEs) have centred on multicellular host species. Such studies may have therefore provided a limited picture of how transposable elements evolve across eukaryotes. The choanoflagellates, as the sister group to Metazoa, are an important study group for investigating unicellular to multicellular transitions. A previous survey of the choanoflagellate Monosiga brevicollis revealed the presence of only three families of LTR retrotransposons, all of which appeared to be active. Salpingoeca rosetta is the second choanoflagellate to have its whole genome sequenced and provides further insight into the evolution and population biology of transposable elements in the closest relative of metazoans. RESULTS: Screening the genome revealed the presence of a minimum of 20 TE families. Seven of the annotated families are DNA transposons and the remaining 13 families are LTR retrotransposons. Evidence for two putative non-LTR retrotransposons was also uncovered, but full-length sequences could not be determined. Superfamily phylogenetic trees indicate that vertical inheritance and, in the case of one family, horizontal transfer have been involved in the evolution of the choanoflagellates TEs. Phylogenetic analyses of individual families highlight recent element activity in the genome, however six families did not show evidence of current transposition. The majority of families possess young insertions and the expression levels of TE genes vary by four orders of magnitude across families. In contrast to previous studies on TEs, the families present in S. rosetta show the signature of selection on codon usage, with families favouring codons that are adapted to the host translational machinery. Selection is stronger in LTR retrotransposons than DNA transposons, with highly expressed families showing stronger codon usage bias. Mutation pressure towards guanosine and cytosine also appears to contribute to TE codon usage. CONCLUSIONS: S. rosetta increases the known diversity of choanoflagellate TEs and the complement further highlights the role of horizontal gene transfer from prey species in choanoflagellate genome evolution. Unlike previously studied TEs, the S. rosetta families show evidence for selection on their codon usage, which is shown to act via translational efficiency and translational accuracy.

SELECTION OF CITATIONS
SEARCH DETAIL
...