Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
ACS Med Chem Lett ; 10(3): 312-317, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30891132

ABSTRACT

A triazine hit identified from a screen of the BMS compound collection was optimized for potency, in vivo activity, and off-target profile to produce the bicyclic pyrimidine γ-secretase modulator BMS-932481. The compound showed robust reductions of Aß1-42 and Aß1-40 in the plasma, brain, and cerebrospinal fluid of mice and rats. Consistent with the γ-secretase modulator mechanism, increases in Aß1-37 and Aß1-38 were observed, with no change in the total amount of Aß1-x produced. No Notch-based toxicity was observed, and the overall preclinical profile of BMS-932481 supported its further evaluation in human clinical trials.

2.
Bioorg Med Chem Lett ; 27(6): 1360-1363, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28223020

ABSTRACT

A series of phosphate and ester-based prodrugs of anilinopyrazinone 1 (BMS-665053) containing either a methylene or an (acyloxy)alkoxy linker was prepared and evaluated in rat pharmacokinetic studies with the goal of improving the oral bioavailability of the parent (1). The prodrugs, in general, had improved aqueous solubility and oral bioavailability compared to 1. Prodrug 12, which contains an (acyloxy)alkoxy linker, showed the greatest improvement in the oral bioavailability relative to the parent (1), with a seven-fold increase (from 5% to 36%) in rat pharmacokinetic studies.


Subject(s)
Prodrugs/chemical synthesis , Prodrugs/pharmacology , Pyrazines/pharmacology , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Animals , Biological Availability , Prodrugs/pharmacokinetics , Pyrazines/pharmacokinetics , Rats
3.
J Pharmacol Exp Ther ; 358(3): 371-86, 2016 09.
Article in English | MEDLINE | ID: mdl-27411717

ABSTRACT

To identify novel targets for neuropathic pain, 3097 mouse knockout lines were tested in acute and persistent pain behavior assays. One of the lines from this screen, which contained a null allele of the adapter protein-2 associated kinase 1 (AAK1) gene, had a normal response in acute pain assays (hot plate, phase I formalin), but a markedly reduced response to persistent pain in phase II formalin. AAK1 knockout mice also failed to develop tactile allodynia following the Chung procedure of spinal nerve ligation (SNL). Based on these findings, potent, small-molecule inhibitors of AAK1 were identified. Studies in mice showed that one such inhibitor, LP-935509, caused a reduced pain response in phase II formalin and reversed fully established pain behavior following the SNL procedure. Further studies showed that the inhibitor also reduced evoked pain responses in the rat chronic constriction injury (CCI) model and the rat streptozotocin model of diabetic peripheral neuropathy. Using a nonbrain-penetrant AAK1 inhibitor and local administration of an AAK1 inhibitor, the relevant pool of AAK1 for antineuropathic action was found to be in the spinal cord. Consistent with these results, AAK1 inhibitors dose-dependently reduced the increased spontaneous neural activity in the spinal cord caused by CCI and blocked the development of windup induced by repeated electrical stimulation of the paw. The mechanism of AAK1 antinociception was further investigated with inhibitors of α2 adrenergic and opioid receptors. These studies showed that α2 adrenergic receptor inhibitors, but not opioid receptor inhibitors, not only prevented AAK1 inhibitor antineuropathic action in behavioral assays, but also blocked the AAK1 inhibitor-induced reduction in spinal neural activity in the rat CCI model. Hence, AAK1 inhibitors are a novel therapeutic approach to neuropathic pain with activity in animal models that is mechanistically linked (behaviorally and electrophysiologically) to α2 adrenergic signaling, a pathway known to be antinociceptive in humans.


Subject(s)
Neuralgia/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Electrophysiological Phenomena/drug effects , Gene Knockout Techniques , HEK293 Cells , Humans , Male , Mice , Neuralgia/metabolism , Neuralgia/physiopathology , Nociception/drug effects , Phenotype , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/deficiency , Protein Serine-Threonine Kinases/genetics , Rats , Spinal Cord/drug effects , Spinal Cord/enzymology , Spinal Cord/physiopathology
4.
Bioorg Med Chem Lett ; 26(9): 2184-7, 2016 May 01.
Article in English | MEDLINE | ID: mdl-27020524

ABSTRACT

A series of pyrazinone-based compounds incorporating either carbamate or aryl ether groups was synthesized and evaluated as corticotropin-releasing factor-1 (CRF1) receptor antagonists. Structure-activity relationship studies led to the identification of highly potent CRF1 receptor antagonists 14a (IC50=0.74 nM) and 14b (IC50=1.9 nM). The synthesis, structure-activity relationships and in vitro metabolic stability properties of compounds in this series will be described.


Subject(s)
Carbamates/pharmacology , Pyrazines/pharmacology , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Animals , Carbamates/chemical synthesis , Carbamates/metabolism , Cell Line, Tumor , Humans , Microsomes, Liver/metabolism , Pyrazines/chemical synthesis , Pyrazines/metabolism , Rats , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 25(22): 5040-7, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26497283

ABSTRACT

The synthesis, evaluation, and structure-activity relationships of a class of acyl guanidines which inhibit the BACE-1 enzyme are presented. The prolinyl acyl guanidine chemotype (7c), unlike compounds of the parent isothiazole chemotype (1), yielded compounds with good agreement between their enzymatic and cellular potency as well as a reduced susceptibility to P-gp efflux. Further improvements in potency and P-gp ratio were realized via a macrocyclization strategy. The in vivo profile in wild-type mice and P-gp effects for the macrocyclic analog 21c is presented.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Guanidines/pharmacology , Macrocyclic Compounds/pharmacology , Proline/analogs & derivatives , Proline/pharmacology , Protease Inhibitors/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Amyloid beta-Peptides/biosynthesis , Animals , Caco-2 Cells , Cathepsin D/antagonists & inhibitors , Cathepsin E/antagonists & inhibitors , Dogs , Guanidines/chemical synthesis , Humans , Macrocyclic Compounds/chemical synthesis , Madin Darby Canine Kidney Cells , Male , Mice , Molecular Docking Simulation , Pepsin A/antagonists & inhibitors , Proline/chemical synthesis , Protease Inhibitors/chemical synthesis
7.
J Neurosci ; 35(17): 6931-6, 2015 Apr 29.
Article in English | MEDLINE | ID: mdl-25926467

ABSTRACT

Multiple small-molecule inhibitors of the ß-secretase enzyme (BACE1) are under preclinical or clinical investigation for Alzheimer's disease (AD). Prior work has illustrated robust lowering of central amyloid ß (Aß) after acute administration of BACE1 inhibitors. However, very few studies have assessed the overall impact of chronically administered BACE1 inhibitors on brain amyloid burden, neuropathology, and behavioral function in aged preclinical models. We investigated the effects of a potent nonbrain-penetrant BACE1 inhibitor, delivered directly to the brain using intracerebroventricular infusion in an aged transgenic mouse model. Intracerebroventricular infusion of the BACE1 inhibitor (0.3-23.5 µg/d) for 8 weeks, initiated in 17-month-old Tg2576 mice, produced dose-dependent increases in brain inhibitor concentrations (0.2-13 µm). BACE1 inhibition significantly reversed the behavioral deficit in contextual fear conditioning, and reduced brain Aß levels, plaque burden, and associated pathology (e.g., dystrophic neurites), with maximal effects attained with ∼1 µg/d dose. Strikingly, the BACE1 inhibitor also reversed amyloid pathology below baseline levels (amyloid burden at the start of treatment), without adversely affecting cerebral amyloid angiopathy, microhemorrhages, myelination, or neuromuscular function. Inhibitor-mediated decline in brain amyloid pathology was associated with an increase in microglial ramification. This is the first demonstration of chronically administered BACE1 inhibitor to activate microglia, reverse brain amyloid pathology, and elicit functional improvement in an aged transgenic mouse model. Thus, engagement of novel glial-mediated clearance mechanisms may drive disease-modifying therapeutic benefit with BACE1 inhibition in AD.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Aspartic Acid Endopeptidases/antagonists & inhibitors , Brain/pathology , Cognition Disorders/drug therapy , Enzyme Inhibitors/therapeutic use , Microglia/drug effects , Age Factors , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Aspartic Acid Endopeptidases/metabolism , Brain/drug effects , Brain/metabolism , Brain/physiology , Cognition Disorders/genetics , Cognition Disorders/pathology , Disease Models, Animal , Fear/drug effects , Humans , Infusions, Intraventricular , Male , Memory/drug effects , Mice , Mice, Transgenic , Microglia/pathology , Mutation/genetics , Neurons/drug effects , Neurons/pathology
8.
Int J Alzheimers Dis ; 2014: 431858, 2014.
Article in English | MEDLINE | ID: mdl-25097793

ABSTRACT

Alzheimer's disease is the most prevalent cause of dementia and is associated with accumulation of amyloid-ß peptide (Aß), particularly the 42-amino acid Aß1-42, in the brain. Aß1-42 levels can be decreased by γ-secretase modulators (GSM), which are small molecules that modulate γ-secretase, an enzyme essential for Aß production. BMS-869780 is a potent GSM that decreased Aß1-42 and Aß1-40 and increased Aß1-37 and Aß1-38, without inhibiting overall levels of Aß peptides or other APP processing intermediates. BMS-869780 also did not inhibit Notch processing by γ-secretase and lowered brain Aß1-42 without evidence of Notch-related side effects in rats. Human pharmacokinetic (PK) parameters were predicted through allometric scaling of PK in rat, dog, and monkey and were combined with the rat pharmacodynamic (PD) parameters to predict the relationship between BMS-869780 dose, exposure and Aß1-42 levels in human. Off-target and safety margins were then based on comparisons to the predicted exposure required for robust Aß1-42 lowering. Because of insufficient safety predictions and the relatively high predicted human daily dose of 700 mg, further evaluation of BMS-869780 as a potential clinical candidate was discontinued. Nevertheless, BMS-869780 demonstrates the potential of the GSM approach for robust lowering of brain Aß1-42 without Notch-related side effects.

9.
Bioanalysis ; 4(15): 1895-905, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22943620

ABSTRACT

BACKGROUND: The polar nucleoside drug ribavirin (RBV) combined with IFN-α is a front-line treatment for chronic hepatitis C virus infection. RBV acts as a prodrug and exerts its broad antiviral activity primarily through its active phosphorylated metabolite ribavirin 5´-triphosphate (RTP), and also possibly through ribavirin 5´-monophosphate (RMP). To study RBV transport, diffusion, metabolic clearance and its impact on drug-metabolizing enzymes, a LC-MS method is needed to simultaneously quantify RBV and its phosphorylated metabolites (RTP, ribavirin 5´-diphosphate and RMP). In a recombinant human UGT1A1 assay, the assay buffer components uridine and its phosphorylated derivatives are isobaric with RBV and its phosphorylated metabolites, leading to significant interference when analyzed by LC-MS with the nominal mass resolution mode. RESULTS: Presented here is a LC-MS method employing LC coupled with full-scan high-resolution accurate MS analysis for the simultaneous quantitative determination of RBV, RMP, ribavirin 5´-diphosphate and RTP by differentiating RBV and its phosphorylated metabolites from uridine and its phosphorylated derivatives by accurate mass, thus avoiding interference. CONCLUSION: The developed LC-high-resolution accurate MS method allows for quantitation of RBV and its phosphorylated metabolites, eliminating the interferences from uridine and its phosphorylated derivatives in recombinant human UGT1A1 assays.


Subject(s)
Antiviral Agents/analysis , Antiviral Agents/pharmacokinetics , Chromatography, High Pressure Liquid/methods , Ribavirin/analysis , Ribavirin/pharmacokinetics , Spectrometry, Mass, Electrospray Ionization/methods , Adenosine Monophosphate , Chromatography, Ion Exchange/methods , Glucuronosyltransferase/analysis , Glucuronosyltransferase/metabolism , Hepatitis C, Chronic/drug therapy , Humans , Nucleotides/analysis , Ribavirin/analogs & derivatives , Uridine/analysis , Uridine Diphosphate/analysis , Uridine Monophosphate/analysis
11.
Bioorg Med Chem Lett ; 21(22): 6909-15, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21974952
12.
Eur J Drug Metab Pharmacokinet ; 36(3): 129-39, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21461793

ABSTRACT

Apixaban is a potent, highly selective, reversible, oral, direct factor Xa (fXa) inhibitor in development for thrombosis prevention and treatment. The preclinical pharmacokinetic (PK) attributes of apixaban feature small volume of distribution (Vd), low systemic clearance (CL), and good oral bioavailability. Apixaban is well absorbed in rat, dog, and chimpanzee, with absolute oral bioavailability of approximately 50% or greater. The steady-state Vd of apixaban is approximately 0.5, 0.2, and 0.17 l/kg in rats, dogs, and chimpanzees, while CL is approximately 0.9, 0.04, and 0.018 l/h/kg, respectively. In vitro metabolic clearance of apixaban is also low. Renal clearance comprises approximately 10-30% of systemic clearance in rat, dog, and chimpanzee. Anti-fXa activity, prothrombin time (PT), and HEPTEST(®) clotting time (HCT) prolongation correlated well with plasma apixaban concentration in rat, dog and chimpanzee. There was no lag time between apixaban plasma concentration and the pharmacodynamic (PD) markers, suggesting a rapid onset of action of apixaban. The PK/PD analyses were performed using an inhibitory E (max) model for anti-fXa assay and a linear model for PT and HCT assays. The IC(50) values for anti-fXa activity were 0.73 ± 0.03 and 1.5 ± 0.15 µM for rat and dog, respectively. The apparent K ( i ) values for PT were approximately 1.7, 6.6, and 4.8 µM for rat, dog and chimpanzee, respectively. The apparent K ( i ) for HCT was approximately 1.3 µM for dog. Apixaban exhibits desirable PK and PD properties for clinical development with good oral bioavailability, small Vd, low CL, and direct, predictable, concentration-dependent PD responses.


Subject(s)
Anticoagulants/pharmacokinetics , Factor Xa Inhibitors , Pyrazoles/pharmacokinetics , Pyridones/pharmacokinetics , Animals , Blood Proteins/metabolism , Dogs , Humans , Metabolic Clearance Rate , Pan troglodytes , Protein Binding , Pyrazoles/pharmacology , Pyridones/pharmacology , Rats , Species Specificity , Whole Blood Coagulation Time
13.
Bioorg Med Chem Lett ; 21(1): 537-41, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21078556

ABSTRACT

Heterocyclic replacement of the isophthalamide phenyl ring in hydroxyethylamine (HEA) BACE-1 inhibitors was explored. A variety of indole-1,3-dicarboxamide HEAs exhibited potent BACE-1 enzyme inhibition, but displayed poor cellular activity. Improvements in cellular activity and aspartic protease selectivity were observed for 7-azaindole-1,3-dicarboxamide HEAs. A methylprolinol-bearing derivative (10n) demonstrated robust reductions in rat plasma Aß levels, but did not lower rat brain Aß due to poor central exposure. The same analog exhibited a high efflux ratio in a bidirectional Caco-2 assay and was likely a substrate of the efflux transporter P-glycoprotein. X-ray crystal structures are reported for two indole HEAs in complex with BACE-1.


Subject(s)
Amines/chemistry , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Indoles/chemical synthesis , Protease Inhibitors/chemistry , Pyridines/chemical synthesis , Amines/chemical synthesis , Amines/pharmacology , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/blood , Animals , Aspartic Acid Endopeptidases/metabolism , Binding Sites , Crystallography, X-Ray , Indoles/chemistry , Indoles/pharmacology , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacology , Protein Structure, Tertiary , Pyridines/chemistry , Pyridines/pharmacology , Rats , Structure-Activity Relationship
14.
Drug Metab Dispos ; 38(1): 16-24, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19833845

ABSTRACT

Monkeys have been proposed as an animal model to predict the magnitude of human clinical drug-drug interactions caused by CYP3A4 enzyme induction. To evaluate whether the cynomolgus monkey can be an effective in vivo model, human CYP3A4 inducers were evaluated both in vitro and in vivo. First, a full-length pregnane X receptor (PXR) was cloned from the cynomolgus monkey, and the sequence was compared with those of rhesus monkey and human PXR. Cynomolgus and rhesus monkey PXR differed by only one amino acid (A68V), and both were highly homologous to human PXR (approximately 96%). When the transactivation profiles of 30 compounds, including known inducers of CYP3A4, were compared between cynomolgus and human PXR, a high degree of correlation with EC(50) values was observed. These results suggest that cynomolgus and human PXR respond in a similar fashion to these ligands. Second, two known human CYP3A4 inducers, rifampicin and hyperforin, were tested in monkey and human primary hepatocytes for induction of CYP3A enzymes. Both monkey and human hepatocytes responded similarly to the inducers and resulted in increased RNA and enzyme activity changes of CYP3A8 and CYP3A4, respectively. Lastly, in vivo induction of CYP3A8 by rifampicin and hyperforin was shown by significant reductions of midazolam exposure that were comparable with those in humans. These results show that the cynomolgus monkey can be a predictive in vivo animal model of PXR-mediated induction of human CYP3A4 and can provide a useful assessment of the resulting pharmacokinetic changes of affected drugs.


Subject(s)
Cytochrome P-450 CYP3A/biosynthesis , Hepatocytes/metabolism , Macaca fascicularis , Receptors, Steroid/metabolism , Xenobiotics/pharmacokinetics , Adult , Amino Acid Sequence , Animals , Bridged Bicyclo Compounds/blood , Bridged Bicyclo Compounds/pharmacokinetics , Bridged Bicyclo Compounds/pharmacology , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Cloning, Molecular , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Drug Interactions/genetics , Enzyme Induction/drug effects , Enzyme Induction/genetics , Female , Gene Expression/drug effects , Gene Expression/genetics , Hepatocytes/drug effects , Hepatocytes/enzymology , Humans , Hypericum/chemistry , Macaca mulatta , Male , Midazolam/blood , Midazolam/metabolism , Midazolam/pharmacokinetics , Middle Aged , Models, Animal , Molecular Sequence Data , Phloroglucinol/analogs & derivatives , Phloroglucinol/blood , Phloroglucinol/pharmacokinetics , Phloroglucinol/pharmacology , Plant Extracts/blood , Plant Extracts/pharmacokinetics , Pregnane X Receptor , Receptors, Steroid/genetics , Rifampin/blood , Rifampin/pharmacokinetics , Rifampin/pharmacology , Sequence Homology, Amino Acid , Terpenes/blood , Terpenes/pharmacokinetics , Terpenes/pharmacology , Transcriptional Activation/drug effects , Transcriptional Activation/genetics , Transfection
15.
J Med Chem ; 52(23): 7653-68, 2009 Dec 10.
Article in English | MEDLINE | ID: mdl-19954247

ABSTRACT

Detailed metabolic characterization of 8, an earlier lead pyrazinone-based corticotropin-releasing factor-1 (CRF(1)) receptor antagonist, revealed that this compound formed significant levels of reactive metabolites, as measured by in vivo and in vitro biotransformation studies. This was of particular concern due to the body of evidence suggesting that reactive metabolites may be involved in idiosyncratic drug reactions. Further optimization of the structure-activity relationships and in vivo properties of pyrazinone-based CRF(1) receptor antagonists and studies to assess the formation of reactive metabolites led to the discovery of 19e, a high affinity CRF(1) receptor antagonist (IC(50) = 0.86 nM) wherein GSH adducts were estimated to be only 0.1% of the total amount of drug-related material excreted through bile and urine, indicating low levels of reactive metabolite formation in vivo. A novel 6-(difluoromethoxy)-2,5-dimethylpyridin-3-amine group in 19e contributed to the potency and improved in vivo properties of this compound and related analogues. 19e had excellent pharmacokinetic properties in rats and dogs and showed efficacy in the defensive withdrawal model of anxiety in rats. The lowest efficacious dose was 1.8 mg/kg. The results of a two-week rat safety study with 19e indicated that this compound was well-tolerated.


Subject(s)
Pyrazines/metabolism , Pyrazines/pharmacology , Pyridines/metabolism , Pyridines/pharmacology , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Administration, Oral , Animals , Biological Availability , Dogs , Drug Discovery , Drug Stability , Humans , Male , Pyrazines/administration & dosage , Pyrazines/pharmacokinetics , Pyridines/administration & dosage , Pyridines/pharmacokinetics , Rats
16.
J Med Chem ; 52(14): 4161-72, 2009 Jul 23.
Article in English | MEDLINE | ID: mdl-19552436

ABSTRACT

A series of pyrazinone-based heterocycles was identified as potent and orally active corticotropin-releasing factor-1 (CRF(1)) receptor antagonists. Selected compounds proved efficacious in an anxiety model in rats; however, pharmacokinetic properties were not optimal. In this article, we describe an in vitro intrinsic clearance-based approach to the optimization of pyrazinone-based CRF(1) receptor antagonists wherein sites of metabolism were identified by incubation with human liver microsomes. It was found that the rate of metabolism could be decreased by incorporation of appropriate substituents at the primary sites of metabolism. This led to the discovery of compound 12x, a highly potent (IC(50) = 1.0 nM) and selective CRF(1) receptor antagonist with good oral bioavailability (F = 52%) in rats and efficacy in the defensive withdrawal anxiety test in rats.


Subject(s)
Pyrazines/pharmacology , Pyrazines/pharmacokinetics , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Animals , Humans , Inhibitory Concentration 50 , Male , Metabolic Clearance Rate , Pyrazines/chemistry , Pyrazines/metabolism , Rats , Receptors, Corticotropin-Releasing Hormone/metabolism
17.
J Med Chem ; 52(14): 4173-91, 2009 Jul 23.
Article in English | MEDLINE | ID: mdl-19552437

ABSTRACT

Evidence suggests that corticotropin-releasing factor-1 (CRF(1)) receptor antagonists may offer therapeutic potential for the treatment of diseases associated with elevated levels of CRF such as anxiety and depression. A pyrazinone-based chemotype of CRF(1) receptor antagonists was discovered. Structure-activity relationship studies led to the identification of numerous potent analogues including 12p, a highly potent and selective CRF(1) receptor antagonist with an IC(50) value of 0.26 nM. The pharmacokinetic properties of 12p were assessed in rats and Cynomolgus monkeys. Compound 12p was efficacious in the defensive withdrawal test (an animal model of anxiety) in rats. The synthesis, structure-activity relationships and in vivo properties of compounds within the pyrazinone chemotype are described.


Subject(s)
Pyrazines/chemistry , Pyrazines/pharmacology , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Animals , Cell Line, Tumor , Humans , Macaca fascicularis , Male , Pyrazines/chemical synthesis , Pyrazines/pharmacokinetics , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
18.
J Pharmacol Exp Ther ; 326(2): 502-13, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18499745

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disease. Amyloid beta (Abeta) peptides are hypothesized to cause the initiation and progression of AD based on pathologic data from AD patients, genetic analysis of mutations that cause early onset forms of AD, and preclinical studies. Based on this hypothesis, beta-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) inhibitors are an attractive therapeutic approach for AD because cleavage of the APP by BACE1 is required to form Abeta. In this study, three potent BACE1 inhibitors are characterized. All three inhibitors decrease Abeta formation in cultured cells with IC(50) values less than 10 nM. Analysis of APP C-terminal fragments by immunoblotting and Abeta peptides by mass spectrometry showed that these inhibitors decreased Abeta by inhibiting BACE1. An assay for Abeta1-40 in mice was developed and used to show that these BACE1 inhibitors decreased plasma Abeta1-40, but not brain Abeta1-40, in wild-type mice. Because these BACE1 inhibitors were substrates for P-glycoprotein (P-gp), a member of the ATP-binding cassette superfamily of efflux transporters, these inhibitors were administered to P-gp knockout (KO) mice. These studies showed that all three BACE1 inhibitors decreased brain Abeta1-40 in P-gp KO mice, demonstrating that P-gp is a major limitation for development of BACE1 inhibitors to test the amyloid hypothesis. A comparison of plasma Abeta1-40 and brain Abeta1-40 dose responses for these three compounds revealed differences in relative ED(50) values, indicating that factors other than P-gp can also contribute to poor brain activity by BACE1 inhibitors.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Aspartic Acid Endopeptidases/antagonists & inhibitors , Brain , Enzyme Inhibitors/pharmacology , Peptide Fragments/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Amyloid Precursor Protein Secretases/physiology , Amyloid beta-Peptides/blood , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Aspartic Acid Endopeptidases/physiology , Blotting, Western , Brain/drug effects , Brain/enzymology , Brain/metabolism , Cell Line , Cell Membrane Permeability , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Enzyme-Linked Immunosorbent Assay , Humans , Mice , Mice, Knockout , Molecular Structure , Peptide Fragments/blood , Protein Binding , Substrate Specificity
19.
J Pharm Sci ; 97(7): 2568-80, 2008 Jul.
Article in English | MEDLINE | ID: mdl-17914718

ABSTRACT

N-in-1 (or cassette) dosing pharmacokinetics (PK) has been used in drug discovery for rapid assessment of PK properties of new chemical entities. However, because of potential for drug-drug interactions this procedure is still controversial. This study was to retrospectively evaluate the N-in-1 dosing approach in drug discovery with an emphasis on the potential for drug-drug interactions. The systemic clearance, volume of distribution, oral bioavailability, and renal excretion of the 31 lead compounds in rats, dogs or chimpanzees were significantly correlated between the N-in-1 dosing and discrete studies with r values of 0.69, 0.91, 0.53, and 0.83 (p < 0.005 for all), respectively. PK parameters for 11 quality control compounds which were involved in 194 N-in-1 studies for screening approximately 1000 compounds had coefficient of variations of less than 70%. The intrinsic microsomal clearances generated from the N-in-1 and discrete incubations were nearly identical (r = 0.97, p < 0.0001). The intrinsic clearances of quality control compound from the N-in-1 incubations were consistent with its discrete CL(int) estimate (cv: 5.4%). Therefore, N-in-1 dosing is a useful approach in drug discovery to quickly obtain initial PK estimates. Potential drug-drug interactions that result in confounding PK estimates do not occur as frequently as expected.


Subject(s)
Cytochrome P-450 CYP3A Inhibitors , Drug Design , Drug Evaluation, Preclinical/methods , Microsomes, Liver , Pharmaceutical Preparations/administration & dosage , Pharmacokinetics , Animals , Biological Availability , Cytochrome P-450 CYP3A , Dogs , Drug Interactions , Humans , In Vitro Techniques , Male , Metabolic Clearance Rate , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology , Models, Biological , Pan troglodytes , Rats
20.
Drug Metab Dispos ; 35(8): 1387-92, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17494642

ABSTRACT

The pharmacokinetics and in vivo potency of 6-hydroxybuspirone (6-OH-buspirone), a major metabolite of buspirone, were investigated. The plasma clearance (47.3 +/- 3.5 ml/min/kg), volume of distribution (2.6 +/- 0.3 l/kg), and half-life (1.2 +/- 0.2 h) of 6-OH-buspirone in rats were similar to those for buspirone. Bioavailability was higher for 6-OH-buspirone (19%) compared with that for buspirone (1.4%). After intravenous infusions to steady-state levels in plasma, 6-OH-buspirone and buspirone increased 5-hydroxytryptamine (HT)(1A) receptor occupancy in a concentration-dependent manner with EC(50) values of 1.0 +/- 0.3 and 0.38 +/- 0.06 microM in the dorsal raphe and 4.0 +/- 0.6 and 1.5 +/- 0.3 microM in the hippocampus, respectively. Both compounds appeared to be approximately 4-fold more potent in occupying presynaptic 5-HT(1A) receptors in the dorsal raphe than the postsynaptic receptors in the hippocampus. Oral dosing of buspirone in rats resulted in exposures (area under the concentration-time profile) of 6-OH-buspirone and 1-(2-pyrimidinyl)-piperazine (1-PP), another major metabolite of buspirone, that were approximately 12 (6-OH-buspirone)- and 49 (1-PP)-fold higher than the exposure of the parent compound. As a whole, these preclinical data suggest that 6-OH-buspirone probably contributes to the clinical efficacy of buspirone as an anxiolytic agent.


Subject(s)
Buspirone/analogs & derivatives , Buspirone/pharmacokinetics , Receptor, Serotonin, 5-HT1A/metabolism , Animals , Area Under Curve , Autoradiography , Biological Availability , Buspirone/blood , Buspirone/metabolism , Buspirone/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Male , Molecular Structure , Piperazines/metabolism , Prosencephalon/drug effects , Prosencephalon/metabolism , Protein Binding/drug effects , Pyridines/metabolism , Raphe Nuclei/drug effects , Raphe Nuclei/metabolism , Rats , Rats, Sprague-Dawley , Serotonin 5-HT1 Receptor Agonists , Serotonin Receptor Agonists/chemistry , Serotonin Receptor Agonists/pharmacokinetics , Serotonin Receptor Agonists/pharmacology , Tritium
SELECTION OF CITATIONS
SEARCH DETAIL
...