Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetes ; 73(4): 565-571, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38232306

ABSTRACT

Autoantibodies to glutamate decarboxylase (GADA) are widely used in the prediction and classification of type 1 diabetes. GADA radiobinding assays (RBAs) using N-terminally truncated antigens offer improved specificity, but radioisotopes limit the high-throughput potential for population screening. Luciferase-based immunoprecipitation system (LIPS) assays are sensitive and specific alternatives to RBAs with the potential to improve risk stratification. The performance of assays using the Nanoluc luciferase (Nluc)-conjugated GAD65 constructs, Nluc-GAD65(96-585) and full length Nluc-GAD65(1-585), were evaluated in 434 well-characterized serum samples from patients with recent-onset type 1 diabetes and first-degree relatives. Nonradioactive, high-throughput LIPS assays are quicker and require less serum than RBAs. Of 171 relatives previously tested single autoantibody positive for autoantibodies to full-length GAD65 by RBA but had not progressed to diabetes, fewer retested positive by LIPS using either truncated (n = 72) or full-length (n = 111) antigen. The Nluc-GAD65(96-585) truncation demonstrated the highest specificity in LIPS assays overall, but in contrast to RBA, N-terminus truncations did not result in a significant increase in disease-specificity compared with the full-length antigen. This suggests that binding of nonspecific antibodies is affected by the conformational changes resulting from addition of the Nluc antigen. Nluc-GAD65(96-585) LIPS assays offer low-blood-volume, high-specificity GADA tests for screening and diagnostics.


Subject(s)
Diabetes Mellitus, Type 1 , Humans , Glutamate Decarboxylase , Sensitivity and Specificity , Autoantibodies , Luciferases/genetics , Immunoprecipitation
2.
Front Endocrinol (Lausanne) ; 14: 1056925, 2023.
Article in English | MEDLINE | ID: mdl-36817608

ABSTRACT

Introduction: Autoimmune diabetes occurs more often in the first 2 years of life in children with Down syndrome (DS) compared with the general population. We previously observed increased frequencies of islet autoantibodies, including insulin autoantibodies (IAA), in children with DS. Assays for IAA using 125I-labelled insulin require competition to overcome cross reactivity with antibodies to the cow's milk protein, bovine serum albumin (BSA). 125I-IAA assay results suggested that levels of antibodies to BSA may also be increased in children with DS. The aim of this study therefore was to determine whether the levels of anti-BSA antibodies differed in children with DS compared with controls. Methods: Samples were available from two populations with DS: one from the UK, (UK DS cohort n=106, 58 male, median age 12.5 years) and one from Estonia (Estonian DS cohort: n=121, 65 male, median age 9.75 years). A UK control population was provided by sex and age-matched healthy siblings of probands participating in the Bart's Oxford (BOX) family study of type 1 diabetes. A competitive-displacement radiobinding assay (RBA) and a Dissociation Enhanced Lanthanide Fluoroimmunoassay (DELFIA) were developed to measure and confirm anti-BSA antibody levels. HLA class II genotype was analysed by PCR using sequence specific primers (PCR-SSP). Results: Overall, levels of anti-BSA antibodies were increased in those with DS compared with controls (p<0.0001) but this was not HLA associated. Conclusion: Increased levels of anti-BSA antibodies may reflect a defect in immune maturation or increased gut permeability in children with DS, increasing their risk of developing autoimmunity.


Subject(s)
Diabetes Mellitus, Type 1 , Down Syndrome , Animals , Female , Cattle , Child , Humans , Male , Serum Albumin, Bovine , Diabetes Mellitus, Type 1/genetics , Autoantibodies , Insulin
SELECTION OF CITATIONS
SEARCH DETAIL
...