Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 28(11): 2103-2108, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29709252

ABSTRACT

Recently, the identification of several classes of aryl sulfonamides and acyl sulfonamides that potently inhibit NaV1.7 and demonstrate high levels of selectivity over other NaV isoforms have been reported. The fully ionizable nature of these inhibitors has been shown to be an important part of the pharmacophore for the observed potency and isoform selectivity. The requirement of this functionality, however, has presented challenges associated with optimization toward inhibitors with drug-like properties and minimal off-target activity. In an effort to obviate these challenges, we set out to develop an orally bioavailable, selective NaV1.7 inhibitor, lacking these acidic functional groups. Herein, we report the discovery of a novel series of inhibitors wherein a triazolesulfone has been designed to serve as a bioisostere for the acyl sulfonamide. This work culminated in the delivery of a potent series of inhibitors which demonstrated good levels of selectivity over NaV1.5 and favorable pharmacokinetics in rodents.


Subject(s)
NAV1.7 Voltage-Gated Sodium Channel/metabolism , Sulfonamides/pharmacology , Animals , Dose-Response Relationship, Drug , Humans , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Molecular Structure , Rats , Structure-Activity Relationship , Sulfonamides/chemistry
2.
J Med Chem ; 60(14): 5990-6017, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28324649

ABSTRACT

Because of its strong genetic validation, NaV1.7 has attracted significant interest as a target for the treatment of pain. We have previously reported on a number of structurally distinct bicyclic heteroarylsulfonamides as NaV1.7 inhibitors that demonstrate high levels of selectivity over other NaV isoforms. Herein, we report the discovery and optimization of a series of atropisomeric quinolinone sulfonamide inhibitors [ Bicyclic sulfonamide compounds as sodium channel inhibitors and their preparation . WO 2014201206, 2014 ] of NaV1.7, which demonstrate nanomolar inhibition of NaV1.7 and exhibit high levels of selectivity over other sodium channel isoforms. After optimization of metabolic and pharmacokinetic properties, including PXR activation, CYP2C9 inhibition, and CYP3A4 TDI, several compounds were advanced into in vivo target engagement and efficacy models. When tested in mice, compound 39 (AM-0466) demonstrated robust pharmacodynamic activity in a NaV1.7-dependent model of histamine-induced pruritus (itch) and additionally in a capsaicin-induced nociception model of pain without any confounding effect in open-field activity.


Subject(s)
NAV1.7 Voltage-Gated Sodium Channel/metabolism , Quinolones/chemistry , Sulfonamides/chemistry , Voltage-Gated Sodium Channel Blockers/chemistry , Analgesics/chemistry , Analgesics/pharmacokinetics , Analgesics/pharmacology , Animals , Capsaicin , Cell Line , Dogs , Histamine , Mice, Inbred C57BL , Molecular Docking Simulation , Pain/chemically induced , Pain/prevention & control , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Pruritus/chemically induced , Pruritus/prevention & control , Quinolones/administration & dosage , Quinolones/chemical synthesis , Quinolones/pharmacokinetics , Quinolones/pharmacology , Rats , Structure-Activity Relationship , Sulfonamides/administration & dosage , Sulfonamides/chemical synthesis , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology , Voltage-Gated Sodium Channel Blockers/pharmacokinetics , Voltage-Gated Sodium Channel Blockers/pharmacology
3.
J Med Chem ; 59(6): 2794-809, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-26942860

ABSTRACT

There has been significant interest in developing a transient receptor potential A1 (TRPA1) antagonist for the treatment of pain due to a wealth of data implicating its role in pain pathways. Despite this, identification of a potent small molecule tool possessing pharmacokinetic properties allowing for robust in vivo target coverage has been challenging. Here we describe the optimization of a potent, selective series of quinazolinone-based TRPA1 antagonists. High-throughput screening identified 4, which possessed promising potency and selectivity. A strategy focused on optimizing potency while increasing polarity in order to improve intrinsic clearance culminated with the discovery of purinone 27 (AM-0902), which is a potent, selective antagonist of TRPA1 with pharmacokinetic properties allowing for >30-fold coverage of the rat TRPA1 IC50 in vivo. Compound 27 demonstrated dose-dependent inhibition of AITC-induced flinching in rats, validating its utility as a tool for interrogating the role of TRPA1 in in vivo pain models.


Subject(s)
Nerve Tissue Proteins/antagonists & inhibitors , Oxadiazoles/chemical synthesis , Oxadiazoles/pharmacology , Purines/chemical synthesis , Purines/pharmacology , Quinazolines/chemical synthesis , Quinazolines/pharmacology , Transient Receptor Potential Channels/antagonists & inhibitors , Animals , Biological Transport, Active , CHO Cells , Calcium Channels , Cricetulus , Dogs , Dose-Response Relationship, Drug , Drug Discovery , High-Throughput Screening Assays , Humans , In Vitro Techniques , Madin Darby Canine Kidney Cells , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Models, Molecular , Pain Measurement/drug effects , Rats , Structure-Activity Relationship , TRPA1 Cation Channel
4.
Org Lett ; 18(1): 16-9, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26671035

ABSTRACT

Regioselective N-alkylation of 1,3-azoles is a valuable transformation. Organomagnesium reagents were discovered to be competent bases to affect regioselective alkylation of various 1,3-azoles. Counterintuitively, substitution selectively occurred at the more sterically hindered nitrogen atom. Numerous examples are provided, on varying 1,3-azole scaffolds, with yields ranging from 25 to 95%.


Subject(s)
Azoles/chemistry , Alkylation , Catalysis , Magnesium/chemistry , Molecular Structure , Organometallic Compounds/chemistry , Stereoisomerism
5.
J Med Chem ; 55(21): 9009-24, 2012 Nov 08.
Article in English | MEDLINE | ID: mdl-22468639

ABSTRACT

A series of potent hydroxyethyl amine (HEA) derived inhibitors of ß-site APP cleaving enzyme (BACE1) was optimized to address suboptimal pharmacokinetics and poor CNS partitioning. This work identified a series of benzodioxolane analogues that possessed improved metabolic stability and increased oral bioavailability. Subsequent efforts focused on improving CNS exposure by limiting susceptibility to Pgp-mediated efflux and identified an inhibitor which demonstrated robust and sustained reduction of CNS ß-amyloid (Aß) in Sprague-Dawley rats following oral administration.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Aspartic Acid Endopeptidases/antagonists & inhibitors , Brain/drug effects , Dioxolanes/chemical synthesis , Ethylamines/chemical synthesis , Peptide Fragments/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Administration, Oral , Animals , Biological Availability , Brain/metabolism , Crystallography, X-Ray , Dioxolanes/pharmacokinetics , Dioxolanes/pharmacology , Dogs , Drug Design , Ethylamines/pharmacokinetics , Ethylamines/pharmacology , Humans , Macaca mulatta , Male , Microsomes, Liver/metabolism , Models, Molecular , Protein Conformation , Protein Transport , Rats , Rats, Sprague-Dawley , Stereoisomerism , Structure-Activity Relationship
6.
J Med Chem ; 55(21): 9025-44, 2012 Nov 08.
Article in English | MEDLINE | ID: mdl-22468684

ABSTRACT

We have previously shown that hydroxyethylamines can be potent inhibitors of the BACE1 enzyme and that the generation of BACE1 inhibitors with CYP 3A4 inhibitory activities in this scaffold affords compounds (e.g., 1) with sufficient bioavailability and pharmacokinetic profiles to reduce central amyloid-ß peptide (Aß) levels in wild-type rats following oral dosing. In this article, we describe further modifications of the P1-phenyl ring of the hydroxyethylamine series to afford potent, dual BACE1/CYP 3A4 inhibitors which demonstrate improved penetration into the CNS. Several of these compounds caused robust reduction of Aß levels in rat CSF and brain following oral dosing, and compound 37 exhibited an improved cardiovascular safety profile relative to 1.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Aspartic Acid Endopeptidases/antagonists & inhibitors , Peptide Fragments/metabolism , Spiro Compounds/chemical synthesis , Thiazoles/chemical synthesis , Administration, Oral , Amyloid beta-Peptides/cerebrospinal fluid , Animals , Blood Proteins/metabolism , Brain/drug effects , Brain/metabolism , Cell Line , Crystallography, X-Ray , Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme Inhibitors , Dogs , Drug Design , Humans , In Vitro Techniques , Male , Microsomes, Liver/metabolism , Models, Molecular , Peptide Fragments/cerebrospinal fluid , Protein Binding , Protein Conformation , Rats , Rats, Sprague-Dawley , Spiro Compounds/pharmacokinetics , Spiro Compounds/pharmacology , Stereoisomerism , Structure-Activity Relationship , Swine , Thiazoles/pharmacokinetics , Thiazoles/pharmacology
7.
J Med Chem ; 51(6): 1668-80, 2008 Mar 27.
Article in English | MEDLINE | ID: mdl-18324759

ABSTRACT

We have previously shown N-arylnaphthamides can be potent inhibitors of vascular endothelial growth factor receptors (VEGFRs). N-Alkyl and N-unsubstituted naphthamides were prepared and found to yield nanomolar inhibitors of VEGFR-2 (KDR) with an improved selectivity profile against a panel of tyrosine and serine/threonine kinases. The inhibitory activity of this series was retained at the cellular level. Naphthamides 3, 20, and 22 exhibited good pharmacokinetics following oral dosing and showed potent inhibition of VEGF-induced angiogenesis in the rat corneal model. Once-daily oral administration of 22 for 14 days led to 85% inhibition of established HT29 colon cancer and Calu-6 lung cancer xenografts at doses of 10 and 20 mg/kg, respectively.


Subject(s)
Antineoplastic Agents/pharmacology , Endothelial Cells/drug effects , Naphthalenes/pharmacology , Protein Kinase Inhibitors/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Administration, Oral , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Corneal Neovascularization/blood , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Design , Drug Evaluation, Preclinical , Female , Humans , Inhibitory Concentration 50 , Injections, Intravenous , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Microsomes, Liver/drug effects , Models, Molecular , Molecular Structure , Naphthalenes/chemical synthesis , Naphthalenes/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Stereoisomerism , Structure-Activity Relationship
8.
J Med Chem ; 51(6): 1649-67, 2008 Mar 27.
Article in English | MEDLINE | ID: mdl-18324761

ABSTRACT

A series of naphthyl-based compounds were synthesized as potential inhibitors of vascular endothelial growth factor (VEGF) receptors. Investigations of structure-activity relationships led to the identification of a series of naphthamides that are potent inhibitors of the VEGF receptor tyrosine kinase family. Numerous analogues demonstrated low nanomolar inhibition of VEGF-dependent human umbilical vein endothelial cell (HUVEC) proliferation, and of these several compounds possessed favorable pharmacokinetic (PK) profiles. In particular, compound 48 demonstrated significant antitumor efficacy against established HT29 human colon adenocarcinoma xenografts implanted in athymic mice. A full account of the preparation, structure-activity relationships, pharmacokinetic properties, and pharmacology of analogues within this series is presented.


Subject(s)
Antineoplastic Agents/pharmacology , Endothelial Cells/drug effects , Naphthalenes/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Administration, Oral , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Corneal Neovascularization/blood , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Design , Drug Evaluation, Preclinical , Female , Humans , Inhibitory Concentration 50 , Injections, Intravenous , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Microsomes, Liver/drug effects , Models, Molecular , Molecular Structure , Naphthalenes/chemical synthesis , Naphthalenes/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Stereoisomerism , Structure-Activity Relationship
9.
J Med Chem ; 51(6): 1695-705, 2008 Mar 27.
Article in English | MEDLINE | ID: mdl-18311900

ABSTRACT

Angiogenesis is vital for solid tumor growth, and its prevention is a proven strategy for the treatment of disease states such as cancer. The vascular endothelial growth factor (VEGF) pathway provides several opportunities by which small molecules can act as inhibitors of endothelial proliferation and migration. Critical to these processes is signaling through VEGFR-2 or the kinase insert domain receptor (KDR) upon stimulation by its ligand VEGF. Herein, we report the discovery of 2,3-dihydro-1,4-benzoxazines as inhibitors of intrinsic KDR activity (IC 50 < 0.1 microM) and human umbilical vein endothelial cell (HUVEC) proliferation with IC 50 < 0.1 microM. More specifically, compound 16 was identified as a potent (KDR: < 1 nM and HUVEC: 4 nM) and selective inhibitor that exhibited efficacy in angiogenic in vivo models. In addition, this series of molecules is typically well-absorbed orally, further demonstrating the 2,3-dihydro-1,4-benzoxazine moiety as a promising platform for generating kinase-based antiangiogenic therapeutic agents.


Subject(s)
Angiogenesis Inhibitors/administration & dosage , Benzoxazines/administration & dosage , Neoplasms/blood supply , Neovascularization, Pathologic/prevention & control , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Administration, Oral , Angiogenesis Inhibitors/chemical synthesis , Angiogenesis Inhibitors/chemistry , Animals , Benzoxazines/chemical synthesis , Benzoxazines/chemistry , Biological Availability , Cell Line , Cell Proliferation/drug effects , Corneal Neovascularization/blood , Crystallography, X-Ray , Dose-Response Relationship, Drug , Endothelial Cells/drug effects , Female , Humans , Injections, Subcutaneous , Ligands , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Models, Animal , Models, Molecular , Molecular Structure , Rats , Rats, Sprague-Dawley , Stereoisomerism , Structure-Activity Relationship , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...