Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Reprod Toxicol ; 128: 108635, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38936095

ABSTRACT

Tributyltin (TBT) is an endocrine-disrupting chemical (EDC) related to reproductive dysfunctions. However, few studies have investigated the effects of TBT exposure on mammary gland development. Thus, we assessed whether subacute TBT exposure causes irregularities in mammary gland development. We administered TBT (100 and 1,000 ng/kg/day for 30 days) to female rats from postnatal day (PND) 25 to PND 55, and mammary gland development, morphology, inflammation, collagen deposition, and protein expression were evaluated. Abnormal mammary gland development was observed in both TBT groups. Specifically, TBT exposure reduced the number of terminal end buds (TEBs), type 1 (AB1) alveolar buds, and type 2 (AB2) alveolar buds. An increase in the lobule and differentiation (DF) 2 score was found in the mammary glands of TBT rats. TBT exposure increased mammary gland blood vessels, mast cell numbers, and collagen deposition. Additionally, both TBT rats exhibited intraductal hyperplasia and TEB-like structures. An increase in estrogen receptor alpha (ERα), progesterone receptor (PR), and cytochrome P450 family 19 subfamily A member 1 (CYP19A1) - positive cells was observed in the mammary glands of TBT rats. A strong negative correlation was observed between CYP19A1- positive cells and TEB number. In addition, CYP19A1 - positive cells were positively correlated with mammary gland TEB-like structure, ductal hyperplasia, inflammation, and collagen deposition. Thus, these data suggest that TBT exposure impairs mammary gland development through the modulation of CYP19A1 signaling pathways in female rats.

2.
Environ Toxicol ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712533

ABSTRACT

Cadmium (Cd) is a heavy metal that acts as endocrine disrupting chemical (EDC). Few studies have investigated the effects of Cd exposure on metabolic dysfunctions, such as type 1 and 2 diabetes mellitus (T1DM and T2DM). Thus, we assessed whether subacute Cd exposure at occupational levels causes abnormalities in white adipose tissue (WAT), liver, pancreas, and skeletal muscle. We administered cadmium chloride (CdCl2) (100 ppm in drinking water for 30 days) to female rats and evaluated Cd levels in serum and metabolic organs, morphophysiology, inflammation, oxidative stress, fibrosis, and gene expression. High Cd levels were found in serum, WAT, liver, pancreas, and skeletal muscle. Cd-exposed rats showed low adiposity, dyslipidemia, insulin resistance, systemic inflammation, and oxidative stress compared to controls. Cd exposure reduced adipocyte size, hyperleptinemia, increased cholesterol levels, inflammation, apoptosis and fibrosis in WAT. Cd-exposed rats had increased liver cholesterol levels, insulin receptor beta (IRß) and peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC1α) expression, karyomegaly, inflammation, and fibrosis. Cd exposure reduced insulin levels and pancreatic islet size and increased inflammation and fibrosis. Cd exposure reduced skeletal muscle fiber diameter and increased IR expression and inflammation. Finally, strong positive correlations were observed between serum, tissue Cd levels, abnormal morphology, tissue inflammation and fibrosis. Thus, these data suggest that subacute Cd exposure impairs WAT, liver, pancreas and skeletal muscle function, leading to T1DM and T2DM features and other complications in female rats.

3.
Mol Cell Endocrinol ; 586: 112203, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38490633

ABSTRACT

Microcystin (MC) is most common cyanobacterial toxin. Few studies have evaluated the MC effects on the hypothalamic-pituitary-gonadal (HPG) axis and metabolic function. In this study, we assessed whether MC exposure results in HPG axis and metabolic changes. Female rats were exposed to a single dose of MC at environmentally relevant levels (5, 20 and 40 µg/kg). After 24 h, we evaluated reproductive and metabolic parameters for 15 days. MC reduced the hypothalamic GnRH protein expression, increased the pituitary protein expression of GnRHr and IL-6. MC reduced LH levels and increased FSH levels. MC reduced the primary follicles, increased the corpora lutea, elevated levels of anti-Müllerian hormone (AMH) and progesterone, and decreased estrogen levels. MC increased ovarian VEGFr, LHr, AMH, ED1, IL-6 and Gp91-phox protein expression. MC increased uterine area and reduced endometrial gland number. A blunted estrogen-negative feedback was observed in MC rats after ovariectomy, with no changes in LH levels compared to intact MC rats. Therefore, these data suggest that a MC leads to abnormal HPG axis function in female rats.


Subject(s)
Hypothalamic-Pituitary-Gonadal Axis , Microcystins , Rats , Female , Animals , Microcystins/toxicity , Interleukin-6/metabolism , Ovary/metabolism , Estrogens , Gonadotropin-Releasing Hormone/metabolism
4.
Endocrinology ; 165(3)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38066676

ABSTRACT

Estrogen actions are mediated by both nuclear (n) and membrane (m) localized estrogen receptor 1 (ESR1). Male Esr1 knockout (Esr1KO) mice lacking functional Esr1 are infertile, with reproductive tract abnormalities. Male mice expressing nESR1 but lacking mESR1 (nuclear-only estrogen receptor 1 mice) are progressively infertile due to testicular, rete testis, and efferent ductule abnormalities similar to Esr1KO males, indicating a role for mESR1 in male reproduction. The H2NES mouse expresses only mESR1 but lacks nESR1. The goal of this study was to identify the functions of mESR1 alone in mice where nESR1 was absent. Breeding trials showed that H2NES males are fertile, with decreased litter numbers but normal pup numbers/litter. In contrast to Esr1KO mice, H2NES testicular, and epididymal weights were not reduced, and seminiferous tubule abnormalities were less pronounced. However, Esr1KO and H2NES males both had decreased sperm motility and a high incidence of abnormal sperm morphology. Seminiferous tubule and rete testis dilation and decreased efferent ductule epithelial height characteristic of Esr1KO males were reduced in H2NES. Consistent with this, expression of genes involved in fluid transport and ion movement that were reduced in Esr1KO (Aqp1, Car2, Car14, Cftr) were partially or fully restored to wild-type levels in H2NES. In summary, in contrast to Esr1KO males, H2NES males are fertile and have reduced phenotypic and functional abnormalities in the testis and efferent ductules. Thus, mESR1 alone, in the absence of nESR1, can partially regulate male reproductive tract structure and function, emphasizing its importance for overall estrogen action.


Subject(s)
Estrogen Receptor alpha , Sperm Motility , Male , Mice , Animals , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Sperm Motility/genetics , Semen/metabolism , Estrogens , Mice, Knockout , Fertility/genetics
5.
Front Endocrinol (Lausanne) ; 14: 1206387, 2023.
Article in English | MEDLINE | ID: mdl-37780627

ABSTRACT

Introduction: Clinical studies have shown that low levels of endogenous testosterone are associated with cardiovascular diseases. Considering the intimate connection between oxidative metabolism and myocardial contractility, we determined the effects of testosterone deficiency on the two spatially distinct subpopulations of cardiac mitochondria, subsarcolemmal (SSM) and interfibrillar (IFM). Methods: We assessed cardiac function and cardiac mitochondria structure of SSM and IFM after 12 weeks of testosterone deficiency in male Wistar rats. Results and Discussion: Results show that low testosterone reduced myocardial contractility. Orchidectomy increased total left ventricular mitochondrial protein in the SSM, but not in IFM. The membrane potential, size and internal complexity in the IFM after orchidectomy were higher compared to the SHAM group. However, the rate of oxidative phosphorylation with all substrates in the IFM after orchidectomy was lower compared to the SHAM group. Testosterone replacement restored these changes. In the testosterone-deficient SSM group, oxidative phosphorylation was decreased with palmitoyl-L-carnitine as substrate; however, the mitochondrial calcium retention capacity in IFM was increased. There was no difference in swelling of the mitochondria in either group. These changes in IFM were followed by a reduction in phosphorylated form of AMP-activated protein kinase (p-AMPK-α), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) translocation to mitochondria and decreased mitochondrial transcription factor A (TFAM). Testosterone deficiency increased NADPH oxidase (NOX), angiotensin converting enzyme (ACE) protein expression and reduced mitochondrial antioxidant proteins such as manganese superoxide dismutase (Mn-SOD) and catalase in the IFM. Treatment with apocynin (1.5 mM in drinking water) normalized myocardial contractility and interfibrillar mitochondrial function in the testosterone depleted animals. In conclusion, our findings demonstrate that testosterone deficiency leads to reduced myocardial contractility and impaired cardiac interfibrillar mitochondrial function. Our data suggest the involvement of reactive oxygen species, with a possibility of NOX as an enzymatic source.


Subject(s)
Mitochondria, Heart , Myocardium , Rats , Animals , Male , Rats, Wistar , Myocardium/metabolism , Oxidative Stress , Testosterone/pharmacology , Testosterone/metabolism
6.
Reprod Toxicol ; 120: 108441, 2023 09.
Article in English | MEDLINE | ID: mdl-37473929

ABSTRACT

The ovaries play critical roles in regulating oocyte maturation and sex steroid hormone production and thus are critical for female reproduction. Ovarian function relies on hormone receptors and signaling pathways, making the ovaries potential targets for environmental factors, such as microcystins (MCs). MCs are a diverse group of cyanobacterial toxins generally found in eutrophic water or algal blooms. Here, we review relevant research on the associations between MC exposure and ovarian dysfunction, including their effects on ovarian morphology, folliculogenesis, steroid production, oxidative stress, endoplasmic reticulum stress, apoptosis, autophagy, and fertility. This review covers the most recent in vitro and in vivo studies in mammals. We also discuss important gaps in the literature. Overall, current evidence indicates that MC exposure causes impairments in ovarian function, but further studies are needed to elucidate the mechanisms through which MCs affect ovarian function and other female endocrine functions.


Subject(s)
Microcystins , Ovary , Animals , Female , Microcystins/toxicity , Marine Toxins , Mammals
7.
Reprod Toxicol ; 119: 108410, 2023 08.
Article in English | MEDLINE | ID: mdl-37211340

ABSTRACT

We previously reported that female rats placed on a diet containing refined carbohydrates (HCD) resulted in obesity and reproductive abnormalities, such as high serum LH concentration and abnormal ovarian function. However, the impacts at the hypothalamic-pituitary (HP) function, specifically regarding pathways linked to reproductive axis modulation are unknown. In this study, we assessed whether subacute feeding with HCD results in abnormal reproductive control in the HP axis. Female rats were fed with HCD for 15 days and reproductive HP axis morphophysiology was assessed. HCD reduced hypothalamic mRNA expression (Kiss1, Lepr, and Amhr2) and increased pituitary LHß+ cells. These changes likely contribute to the increase in serum LH concentration observed in HCD. Blunted estrogen negative feedback was observed in HCD, with increased kisspeptin protein expression in the arcuate nucleus of the hypothalamus (ARH), lower LHß+ cells and LH concentration in ovariectomized (OVX)+HCD rats. Thus, these data suggest that HCD feeding led to female abnormal reproductive control of HP axis.


Subject(s)
Hypothalamus , Obesity , Rats , Female , Animals , Hypothalamus/metabolism , Obesity/metabolism , Arcuate Nucleus of Hypothalamus/metabolism , Diet , Carbohydrates , Kisspeptins/genetics , Kisspeptins/metabolism
8.
Toxicol Sci ; 193(2): 204-218, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37021957

ABSTRACT

Phthalates are endocrine-disrupting chemicals used in consumer products. Although phthalates are obesogens and affect metabolic function, it is unknown if chronic exposure for 6 months to a phthalate mixture alters adipose tissue phenotype in female mice. After vehicle or mixture exposure, white adipose tissue and brown adipose tissue (WAT and BAT) were analyzed for expression of adipogenesis, proliferation, angiogenesis, apoptosis, oxidative stress, inflammation, and collagen deposition markers. The mixture altered WAT morphology, leading to an increase in hyperplasia, blood vessel number, and expression of BAT markers (Adipoq and Fgf2) in WAT. The mixture increased the expression of the inflammatory markers, Il1ß, Ccl2, and Ccl5, in WAT. The mixture also increased expression of the proapoptotic (Bax and Bcl2) and antiapoptotic (Bcl2l10) factors in WAT. The mixture increased expression of the antioxidant Gpx1 in WAT. The mixture changed BAT morphology by increasing adipocyte diameter, whitening area, and blood vessel number and decreased expression of the thermogenic markers Ucp1, Pgargc1a, and Adrb3. Furthermore, the mixture increased the expression of adipogenic markers Plin1 and Cebpa, increased mast cell number, and increased Il1ß expression in BAT. The mixture also increased expression of the antioxidant markers Gpx and Nrf2 and the apoptotic marker Casp2 in BAT. Collectively, these data indicate that chronic exposure to a phthalate mixture alters WAT and BAT lipid metabolism phenotypes in female mice, leading to an apparent shift in their normal morphology. Following long-term exposure to a phthalate mixture, WAT presented BAT-like features and BAT presented WAT-like features.


Subject(s)
Adipose Tissue, Brown , Antioxidants , Animals , Mice , Female , Adipose Tissue, Brown/metabolism , Antioxidants/metabolism , Adipose Tissue , Adipose Tissue, White , Phenotype , Mice, Inbred C57BL , Caspase 2/metabolism
9.
Toxicol Lett ; 376: 26-38, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36638932

ABSTRACT

Tributyltin (TBT) is an obesogenic endocrine disrupting chemical (EDC) linked with several metabolic complications. Brown adipose tissue (BAT) is the principal site for thermogenesis, making it a potential target for obesity management and metabolic disease. However, few studies have evaluated TBT effect on BAT function. In this investigation, we assessed whether subacute (15 days) and low dose of TBT exposure (100 ng/kg/day) results in abnormal BAT morphophysiology in adult male rats. Body temperature, BAT morphology, inflammation, oxidative stress, collagen deposition and BAT metabolic gene expression markers were assessed in room temperature (Room, ∼24 ºC) and after cold tolerance test (Cold, ∼4 ºC) conditions. A reduction in body temperature was observed in both Room and Cold conditions in TBT rats, suggesting abnormal BAT thermogenic function. Changes in BAT morphology were observed in TBT rats, with an increase in BAT lipid accumulation, an increase in BAT unilocular adipocyte number and a decrease in BAT multilocular adipocyte number in Room condition. All these parameters were opposite in Cold condition TBT rats, leading to a borderline increase in BAT UCP1 protein expression. An increase in BAT mast cell number was observed in TBT rats in Room condition. An increase in ED1 protein expression (macrophage marker) was observed in TBT rats in Cold condition. Oxidative stress and collagen deposition increased in both Room and Cold conditions in TBT rats. TBT exposure caused a borderline increase in BAT COL1A1 protein expression in Cold condition. Further, strong negative correlations were observed between body temperature and BAT lipid accumulation, and BAT lipid accumulation and multilocular adipocyte number. Thus, these data suggest that TBT exposure impaired BAT morphophysiology through impacts on lipid accumulation, inflammation, fibrosis and oxidative stress in male rats.


Subject(s)
Adipose Tissue, Brown , Obesity , Rats , Male , Animals , Obesity/metabolism , Adipose Tissue, Brown/metabolism , Inflammation/metabolism , Collagen/metabolism , Lipids
10.
Mol Cell Endocrinol ; 558: 111774, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36096379

ABSTRACT

A diet containing refined carbohydrate (HCD) caused obesity and white adipose tissue (WAT) abnormalities, but it is unclear if HCD is linked with other metabolic dysfunctions in female models. Thus, we assessed whether HCD results in WAT, pancreas, liver, skeletal muscle (SM) and thyroid (TH) abnormalities in female rats. Female rats were fed with HCD for 15 days and metabolic morphophysiology, inflammation, oxidative stress (OS), and fibrosis markers were assessed. HCD rats presented large adipocytes, hyperleptinemia, and WAT OS. HCD caused irregular glucose metabolism, low insulin levels, and large pancreatic isle. Granulomas, reduced glycogen, and OS were observed in HCD livers. HCD caused hypertrophy and increased in glycogen in SM. HCD caused irregular TH morphophysiology, reduced colloid area and high T3 levels. In all selected tissues, inflammation and fibrosis were observed in HCD rats. Collectively, these data suggest that the HCD impairs metabolic function linked with irregularities in WAT, pancreas, liver, SM and TH in female rats.


Subject(s)
Diet , Insulins , Rats , Female , Animals , Inflammation , Fibrosis , Glycogen , Glucose , Diet, High-Fat
11.
Reprod Toxicol ; 112: 7-13, 2022 09.
Article in English | MEDLINE | ID: mdl-35714933

ABSTRACT

The placenta is a temporary organ that plays critical roles at the maternal-fetal interface. Normal development and function of the placenta is dependent on hormonal signaling pathways that make the placenta a target of endocrine disrupting chemical (EDC) action. Studies showing association between prenatal exposure, hormone disruption, and reproductive damage indicate that EDCs are developmentally toxic and can impact future generations. In this context, new placental models (trophoblast-derived cell lines, organotypic or 3D cell models, and physiologically based kinetic models) have been developed in order to create new approach methodology (NAM) to assess and even prevent such disastrous toxic harm in future generations. With the widespread discouragement of conducting animal studies, it has become irrefutable to develop in vitro models that can serve as a substitute for in vivo models. The goal of this review is to discuss the newest in vitro models to understand the maternal-fetal interface and predict placental development, physiology, and dysfunction generated by failures in molecular hormone control mechanisms, which, consequently, may change epigenetic programming to increase susceptibility to metabolic and other disorders in the offspring. We summarize the latest placental models for developmental toxicology studies, focusing mainly on three-dimensional (3D) culture models.


Subject(s)
Fetal Development , Placenta , Animals , Female , Fetal Development/physiology , Hormones/metabolism , Placenta/metabolism , Placentation , Pregnancy , Trophoblasts
12.
Toxicol Sci ; 186(2): 179-189, 2022 03 28.
Article in English | MEDLINE | ID: mdl-34850235

ABSTRACT

The hypothalamic-pituitary-gonadal (HPG) axis is the principal modulator of reproductive function. Proper control of this system relies on several hormonal pathways, which make the female reproductive components susceptible to disruption by endocrine-disrupting chemicals such as tributyltin (TBT). Here, we review the relevant research on the associations between TBT exposure and dysfunction of the female HPG axis components. Specifically, TBT reduced hypothalamic gonadotropin-releasing hormone (GnRH) expression and gonadotropin release, and impaired ovarian folliculogenesis, steroidogenesis, and ovulation, at least in part, by causing abnormal sensitivity to steroid feedback mechanisms and deleterious ovarian effects. This review covers studies using environmentally relevant doses of TBT in vitro (1 ng-20 ng/ml) and in vivo (10 ng-20 mg/kg) in mammals. The review also includes discussion of important gaps in the literature and suggests new avenue of research to evaluate the possible mechanisms underlying TBT-induced toxicity in the HPG axis. Overall, the evidence indicates that TBT exposure is associated with toxicity to the components of the female reproductive axis. Further studies are needed to better elucidate the mechanisms through which TBT impairs the ability of the HPG axis to control reproduction.


Subject(s)
Trialkyltin Compounds , Animals , Female , Gonads , Hypothalamo-Hypophyseal System , Hypothalamus , Mammals , Pituitary Gland , Reproduction , Trialkyltin Compounds/toxicity
14.
Reprod Toxicol ; 103: 108-123, 2021 08.
Article in English | MEDLINE | ID: mdl-34102259

ABSTRACT

Exposure to the obesogen tributyltin (TBT) alone or high carbohydrate diet (HCD) alone leads to obesity and reproductive complications, such as premature ovary failure (POF) features. However, little is known about interactions between TBT and nutrition and their combined impact on reproduction. In this study, we assessed whether acute TBT and HCD exposure results in reproductive and metabolic irregularities. Female rats were treated with TBT (100 ng/kg/day) and fed with HCD for 15 days and metabolic and reproductive outcomes were assessed. TBT and HCD rats displayed metabolic impairments, such as increased adiposity, abnormal lipid profile and triglyceride and glucose (TYG) index, worsening adipocyte hypertrophy in HCD-TBT rats. These metabolic consequences were linked with reproductive disorders. Specifically, HCD-TBT rats displayed irregular estrous cyclicity, high follicle-stimulating hormone (FSH) levels, low anti-Müllerian hormone (AMH) levels, reduction in ovarian reserve, and corpora lutea (CL) number, with increases in atretic follicles, suggesting that HCD-TBT exposure exacerbated POF features. Further, strong negative correlations were observed between adipocyte hypertrophy and ovarian reserve, CL number and AMH levels. HCD-TBT exposure resulted in reproductive tract inflammation and fibrosis. Collectively, these data suggest that TBT plus HCD exposure leads to metabolic and reproductive abnormalities, exacerbating POF features in female rats.


Subject(s)
Hazardous Substances/toxicity , Primary Ovarian Insufficiency/chemically induced , Trialkyltin Compounds/toxicity , Adiposity , Animals , Anti-Mullerian Hormone/metabolism , Diet , Estrous Cycle , Female , Obesity/metabolism , Ovarian Follicle/metabolism , Ovarian Reserve , Ovary/drug effects , Ovary/metabolism , Primary Ovarian Insufficiency/metabolism , Rats , Reproduction
15.
Reprod Toxicol ; 103: 1-17, 2021 08.
Article in English | MEDLINE | ID: mdl-34015474

ABSTRACT

Proper placental development and function relies on hormone receptors and signaling pathways that make the placenta susceptible to disruption by endocrine disrupting chemicals, such as phthalates. Here, we review relevant research on the associations between phthalate exposures and dysfunctions of the development and function of the placenta, including morphology, physiology, and genetic and epigenetic effects. This review covers in vitro studies, in vivo studies in mammals, and studies in humans. We also discuss important gaps in the literature. Overall, the evidence indicates that toxicity to the placental and maternal-fetal interface is associated with exposure to phthalates. Further studies are needed to better elucidate the mechanisms through which phthalates act in the placenta as well as additional human studies that assess placental disruption through pregnancy with larger sample sizes.


Subject(s)
Phthalic Acids/toxicity , Placenta/drug effects , Placentation/drug effects , Animals , Endocrine Disruptors/toxicity , Female , Humans , Maternal Exposure , Pregnancy
16.
Front Toxicol ; 3: 654077, 2021.
Article in English | MEDLINE | ID: mdl-35295135

ABSTRACT

Tributyltin (TBT) is a persistent organometallic pollutant widely used in several agricultural and industrial processes. TBT exposure is associated with various metabolic, reproductive, immune, and cardiovascular abnormalities. However, few studies have evaluated the effects of TBT on behavior. In the present study, we aimed to investigate whether TBT exposure results in oxidative, neuroendocrine, and behavioral alterations. TBT was administered to adult female mice (250, 500, or 750 ng/kg/day or veh for 14 days), and their recognition memory was assessed. We have also evaluated estrogen receptor (ER)α protein expression and oxidative stress (OS) in brain areas related to memory, as well as the correlation between them. A reduction in short- and long-term recognition memory (STM and LTM) performance, as well as in total exploration time was observed in TBT mice. Reduced ERα protein expression was observed in the prefrontal cortex (PFC) and hippocampus of TBT mice, while an increase in TBARS concentration was observed in the PFC of treated animals. Collectively, these data suggest that TBT exposure impairs recognition memory in female mice as a result of, at least in part, its toxicological effects on ERα expression and OS in specific brain areas related to memory.

17.
Environ Pollut ; 269: 116154, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33280922

ABSTRACT

Cadmium (Cd), a toxic heavy metal, is a known endocrine disruptor that is associated with reproductive complications. However, few studies have explored the effects of Cd exposure on features of polycystic ovary syndrome (PCOS) and premature ovary failure (POF). In this study, we assessed whether doses found in workers occupationally exposed to Cd and subacute exposure result in hypothalamic-pituitary-gonadal (HPG) axis and other irregularities. We administered CdCl2 to female rats (100 ppm in drinking water for 30 days) and then assessed Cd levels in the blood, HPG axis and uterus. Metabolic features, HPG axis function, reproductive tract (RT) morphophysiology, inflammation, oxidative stress (OS), and fibrosis were evaluated. Cd exposure increased Cd levels in the serum, HPG axis, and uterus. Cd rats displayed metabolic impairments, such as a reduction in adiposity, dyslipidemia, and insulin resistance (IR). Cd exposure also caused improper functioning in the HPG. Specifically, Cd exposure caused irregular estrous cyclicity, abnormal hypothalamic gene expression (upregulated - Kiss1, AR and mTOR; downregulated - Kiss1R, LepR and TNF-α), high LH levels, low AMH levels and abnormal ovarian follicular development, coupled with a reduction in ovarian reserve and antral follicle number was observed, suggesting ovarian depletion. Further, Cd exposure caused a reduction in corpora lutea (CL) and granulosa layer thickness together with an increase in cystic/atretic follicles. In addition, Cd exposure caused RT inflammation, OS and fibrosis. Finally, strong positive correlations were observed between serum, RT Cd levels, IR, dyslipidemia and estrous cycle length, cystic, atretic follicles, LH levels, and RT inflammation. Thus, these data suggest that subacute Cd exposure using doses found in workers occupationally exposed to Cd disrupt the HPG axis function, leading to PCOS and POF features and other abnormalities in female rats.


Subject(s)
Polycystic Ovary Syndrome , Primary Ovarian Insufficiency , Animals , Cadmium/toxicity , Female , Humans , Kisspeptins , Ovarian Follicle , Polycystic Ovary Syndrome/chemically induced , Primary Ovarian Insufficiency/chemically induced , Rats
18.
Mol Cell Endocrinol ; 518: 110997, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32841708

ABSTRACT

The hypothalamic-pituitary axis (HP axis) plays a critical and integrative role in the endocrine system control to maintain homeostasis. The HP axis is responsible for the hormonal events necessary to regulate the thyroid, adrenal glands, gonads, somatic growth, among other functions. Endocrine-disrupting chemicals (EDCs) are a worldwide public health concern. There is growing evidence that exposure to EDCs such as bisphenol A (BPA), some phthalates, polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and biphenyls (PBBs), dichlorodiphenyltrichloroethane (DDT), tributyltin (TBT), and atrazine (ATR), is associated with HP axis abnormalities. EDCs act on hormone receptors and their downstream signaling pathways and can interfere with hormone synthesis, metabolism, and actions. Because the HP axis function is particularly sensitive to endogenous hormonal changes, disruptions by EDCs can alter HP axis proper function, leading to important endocrine irregularities. Here, we review the evidence that EDCs could directly affect the mammalian HP axis function.


Subject(s)
Endocrine Disruptors/toxicity , Hypothalamo-Hypophyseal System/drug effects , Animals , Endocrine System/drug effects , Environmental Exposure/adverse effects , Gonads/drug effects , Gonads/physiology , Humans , Hypothalamo-Hypophyseal System/physiology , Mammals , Reproduction/drug effects , Reproduction/physiology , Thyroid Gland/drug effects , Thyroid Gland/physiology
19.
Toxicol Lett ; 332: 42-55, 2020 Oct 10.
Article in English | MEDLINE | ID: mdl-32629074

ABSTRACT

Obesity is associated with several female reproductive complications, such as polycystic ovary syndrome (PCOS). The exact mechanism of this relationship remains unclear. Few previous studies using diet containing refined carbohydrate (HCD) leading to obesity have been performed and it is unclear if HCD is linked with reproductive dysfunctions. In this investigation, we assessed whether subchronic HCD exposure results in reproductive and other irregularities. Female rats were fed with HCD for 15 days and metabolic outcomes and reproductive tract morphophysiology were assessed. We further assessed reproductive tract inflammation, oxidative stress (OS) and fibrosis. HCD rats displayed metabolic impairments, such as an increase in body weight/adiposity, adipocyte hypertrophic, abnormal lipid profile, glucose tolerance and insulin resistance (IR) and hyperleptinemia. Improper functioning of the HCD reproductive tract was observed. Specifically, irregular estrous cyclicity, high LH levels and abnormal ovarian morphology coupled with reduction in primordial and primary follicle numbers was observed, suggesting ovarian reserve depletion. Improper follicular development and a reduction in antral follicles, corpora lutea and granulosa layer area together with an increase in cystic follicles were apparent. Uterine atrophy and reduction in endometrial gland (GE) number was observed in HCD rats. Reproductive tract inflammation, OS and fibrosis were seen in HCD rats. Further, strong positive correlations were observed between body weight/adiposity and IR with estrous cycle length, cystic follicles, ovarian reserve, GE and other abnormalities. Thus, these data suggest that the subchronic HCD exposure led to PCOS-like features, impaired ovarian reserve, GE number, and other reproductive abnormalities in female rats.


Subject(s)
Dietary Carbohydrates/toxicity , Ovarian Reserve/drug effects , Ovary/metabolism , Polycystic Ovary Syndrome/chemically induced , Adiposity/drug effects , Animals , Body Weight , Diet , Estrous Cycle/drug effects , Female , Fibrosis , Glucose Intolerance/blood , Glucose Intolerance/chemically induced , Insulin Resistance , Leptin/blood , Lipid Metabolism , Ovarian Follicle/drug effects , Ovary/pathology , Oxidative Stress , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/pathology , Rats , Rats, Wistar
20.
Toxicol Sci ; 176(1): 74-85, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32239163

ABSTRACT

Tributyltin (TBT) chloride is an endocrine disrupting chemical associated with reproductive complications. Studies have shown that TBT targets the reproductive tract, impairing ovarian folliculogenesis, and uterine morphophysiology. In this investigation, we assessed whether subchronic and low dose of TBT exposure results in abnormal ovarian follicular reserve and other irregularities in female mice. TBT was administered to female mice (500 ng/kg/day for 12 days via gavage), and reproductive tract morphophysiology was assessed. We further assessed reproductive tract inflammation and oxidative stress. Improper functioning of the reproductive tract in TBT mice was observed. Specifically, irregular estrous cyclicity and abnormal ovarian morphology coupled with reduction in primordial and primary follicle numbers was observed, suggesting ovarian reserve depletion. In addition, improper follicular development and a reduction in antral follicles, corpora lutea, and total healthy ovarian follicles together with an increase in cystic follicles were apparent. Evidence of uterine atrophy, reduction in endometrial gland number, and inflammation and oxidative stress were seen in TBT mice. Further, strong negative correlations were observed between testosterone levels and primordial, primary, and total healthy ovarian follicles. Thus, these data suggest that the subchronic and low dose of TBT exposure impaired ovarian follicular reserve, uterine gland number, and other reproductive features in female mice.


Subject(s)
Environmental Pollutants/toxicity , Ovarian Reserve/drug effects , Trialkyltin Compounds/toxicity , Animals , Corpus Luteum , Endocrine Disruptors , Estrous Cycle , Female , Mice , Ovarian Follicle , Ovary , Oxidative Stress , Reproduction , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...