Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Environ Res ; 236(Pt 2): 116790, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37517483

ABSTRACT

The present study highlights the treatment of industrial effluent, which is one of the most life-threatening factors. Herein, for the first time, two types of NiO (green and black) photocatalysts were prepared by facile chemical precipitation and thermal decomposition methods separately. The synthesized NiO materials were demonstrated with various instrumental techniques for finding their characteristics. The X-ray diffraction studies (XRD) and X-ray photoelectron spectroscopy (XPS) revealed the presence of Ni2O3 in black NiO material. The transmission electron microscopic (TEM) images engrained the nanospherical shaped green NiO and nanoflower shaped black NiO/Ni2O3 materials. Further, the band gap of black NiO nanoflower was 2.9 eV compared to green NiO having 3.8 eV obtained from UV-vis spectroscopy. Meanwhile, both NiO catalysts were employed for visible light degradation, which yields a 60.3% efficiency of black NiO comparable to a 4.3% efficiency of green NiO within 180 min of exposure. The higher degrading efficiency of black NiO was due to the presence of Ni2O3 and the development of pores, which was evident from the Barrett-Joyner-Halenda (BJH) method. Type IV hysteresis was observed in black NiO nanoflowers with high surface area and pore size measurements. This black NiO/Ni2O3 synthesized from the thermal decomposition method has promoted better photocatalytic degradation of 4-chlorophenol upon exposure to visible light and is applicable for other industrial pollutants.


Subject(s)
Chlorophenols , Light , Chlorophenols/chemistry , Spectrum Analysis , Catalysis
2.
Environ Res ; 216(Pt 1): 114428, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36179883

ABSTRACT

Creating mesoporous architecture on the surface of metal oxides without using pore creating agent is significant interest in electrochemical sensors because these materials act as an efficient electron transfer process between the electrode interface and the analytes. Recent advances in mesoporous titanium dioxide (TiO2)-based materials have acquired extraordinary opportunities because of their interconnected porous structure could act as a host for doping with various transition metals or heteroatoms to form a new type of heterojunction. Herein, a simple method is developed to synthesize mesoporous copper oxide (CuO) decorated on TiO2 nanostructures in which homogenous shaped CuO nanocrystals act as dopants decorated on the mesoporous structure of TiO2, resulting in p-n heterojunction nanocomposite. The TiO2 particles exhibit a mesoporous structure with a pore volume of about 0.117 cm3/g is capable to load CuO nanocrystals on the surface. As a result, large pore volume 0.304 cm³/g is obtained for CuO-TiO2 heterojunction nanocomposite with the loading of uniform-shaped CuO nanocrystals on the mesoporous TiO2. The resulting CuO-TiO2 nanocomposite on modified glassy carbon (GC) electrode exhibits good electrochemical performance for oxidation of catechol with the observation of strong enhancement in the anodic peak potential at +0.36 V. The decrease in the overpotential for the oxidation of catechol when compared to TiO2/GC is attributed to the presence of CuO nanocrystals providing a large surface area, resulting in wide linear range 10 nM to 0.57 µM. Moreover, the resultant modified electrode exhibited good sensitivity, selectivity and reproducibility and the sensor could able to determine the presence of catechol in real samples such as lake and river water. Therefore, the obtained CuO-TiO2 nanocomposite on the modified GC delivered good electrochemical sensing performance and which could be able to perform a promising strategy for designing various metal oxide doped nanocomposites for various photochemical and electrocatalytic applications.


Subject(s)
Electrochemical Techniques , Nanocomposites , Electrochemical Techniques/methods , Reproducibility of Results , Copper/chemistry , Nanocomposites/chemistry , Oxides/chemistry , Carbon/chemistry , Catechols , Water
3.
Environ Res ; 215(Pt 3): 114427, 2022 12.
Article in English | MEDLINE | ID: mdl-36179884

ABSTRACT

The capacity to generate a constant signal response from an enzyme on an electrode surface has been a fascinating topic of research from the past three decades. To nourish the enzymatic activity during electrochemical reactions, the immobilization of dual enzymes on the electrode surface could prevent the enzymatic loss without denaturation and thus long-term stability can be achieved. For effective immobilization of dual enzymes, mesoporous materials are the ideal choice because of its numerous advantages such as 1. The presence of porous structure facilitates high loading of enzymes 2. The formation of protective environment can withstand the enzymatic activity even at acidic or basic pH values and even at elevated temperatures. Herein, we develop bienzymatic immobilization of horseradish peroxidase (HRP) and cholesterol oxidase (ChOx) on mesoporous V2O5-TiO2 based binary nanocomposite for effective sensing of hydrogen peroxide (H2O2) in presence of redox mediator hydroquinone (HQ). The utilization of redox mediator in second-generation biosensing of H2O2 can eliminate the interference species and reduces the operating potential with higher current density for electrochemical reduction reaction. Using this mediator transfer process approach at HRP/ChOx/V2O5-TiO2 modified GC, the H2O2 can be determined at operating potential (-0.2 V) with good linear range (0.05-3.5 mM) higher sensitivity (1040 µAµM-1 cm-2) and lower detection limit of about 20 µM can be attained, which is due to higher mediation of electrons were transferred to the enzyme cofactors. These interesting characteristics could be due to mesoporous structure of V2O5-TiO2 can induce large immobilization and facilitate higher interaction with enzymes for wide range of biosensing applications.


Subject(s)
Biosensing Techniques , Hydrogen Peroxide , Cholesterol Oxidase , Coenzymes , Enzymes, Immobilized/chemistry , Horseradish Peroxidase/chemistry , Hydrogen Peroxide/chemistry , Hydroquinones , Titanium
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 268: 120679, 2022 Mar 05.
Article in English | MEDLINE | ID: mdl-34894563

ABSTRACT

Rare earth (RE- Pr, Er and Nd) doped ZnO nanostructures were prepared through simple wet chemical precipitation route. The RE doping induced interesting morphological transition from spherical to flower like structures were analyzed. The X-ray diffraction (XRD) measurements revealed that the prepared materials were of highly crystalline in nature and RE dopant ions did not altered the crystal structure of ZnO. The microstrain of ZnO was altered with respect to the nature of dopants. In the case of the Pr doped ZnO, X-ray photoelectron spectroscopy (XPS) analysis confirmed that the dopant (Pr) ions successfully substituted in the ZnO lattice. Raman spectra revealed RE doping induced lower energy side shift and variation in intensity of the peaks related to the characteristic phonon modes of ZnO. In the case of Nd doped ZnO nanostructures, dopant induced suppression in classical Raman modes and evolution of multiphonon related modes were identified. Optical diffuse reflectance spectral (DRS) measurements, along with the characteristic excitonic band of ZnO, other bands associated to the transitions of 4f energy levels related to the RE ions were observed. The partially filled 4f orbitals led to the enhanced photocatalytic activity in RE doped ZnO nanostructures. The observed enhanced photocatalytic activity in RE doped ZnO when compared to bare ZnO was discussed. The decolorization efficiency of MB ensued the following order 96 > 94 > 86 > 78% for ZnErO, ZnNdO, ZnPrO and ZnO, respectively.

5.
J Hazard Mater ; 416: 125989, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34492886

ABSTRACT

Recent interest and responsibility to retain the water resources rose among people. Scientists have been engaged to develop the mechanism that involves the freely available sunlight - a sustainable resource - to remove the pollutants from water to make it again suitable for life. Ample research was reported in the removal of dye pollutants present in water. For this they have utilized p type and n type semiconductors or combination of both (p-n type) under the excitation of a wide range of electromagnetic band energy. Most of the interest lies in emerging out of the mechanism with hybrid semiconductors to remove the previously reported flaws. Toward this regard, this manuscript aims to develop unique material using the underlying p-n-p model for harnessing visible light in catalysis. Initially, p-n structure was developed with copper oxide (p-type) and zinc oxide (n-type), then polyaniline (p-type) conjugated at different concentrations (0.5 M, 0.7 M & 1.0 M), to yield p-n-p models, using precipitation followed by sonication techniques. Detailed physicochemical investigations were conducted on the resultant p-n-p material to elucidate its characteristics. Furthermore, the mechanism was advocated for the best photocatalytic activity under visible light excitation for the degradation of 4-chlorophenol and compared with the performance of a standard p-n (CuO/ZnO) combination.


Subject(s)
Chlorophenols , Zinc Oxide , Copper , Humans , Light
6.
RSC Adv ; 10(28): 16473-16480, 2020 Apr 23.
Article in English | MEDLINE | ID: mdl-35498872

ABSTRACT

CoFe2O4/ZnO magnetic nanocatalysts were synthesized using a low-frequency ultrasound-assisted technique to enhance the optical, morphological, magnetic and catalytic properties of ZnO. The as-synthesized nanocatalysts were characterized by XRD, Raman, TEM, DR-UV-Vis and VSM analyses in order to confirm the expected modifications of the resulting nanocatalysts. The Raman spectral analysis revealed substitutional Zn2+ in the CoFe2O4/ZnO nanocatalyst. The as-synthesized material was tested for its catalytic activity in the degradation of Acid Blue (AB113), a known textile pollutant. The CoFe2O4 and CoFe2O4/ZnO nanocatalysts revealed the efficient catalytic degradation of AB113 in ambient conditions. The nanocatalyst dosage and the initial concentration of AB113 were varied by fixing one parameter as constant in order to determine the maximum catalytic efficiency with the minimum catalyst loading for AB113 degradation. The CoFe2O4/ZnO nanocatalyst demonstrated 10-fold enhanced mineralization of AB113 compared to the individual bare nanocatalysts, which could be achieved within 3 hours of catalytic degradation of AB113. The magnetic CoFe2O4/ZnO nanocatalyst was found to be stable for six consecutive recycles of AB113 degradation, which indicates that the catalytic efficiency of the nanocatalyst was retained after various numbers of cycles.

7.
J Colloid Interface Sci ; 542: 45-53, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30721835

ABSTRACT

The detection of water soluble vitamins using electrochemical method is widely established in pharmaceutical quality control laboratories, and especially the recent advances in hybrid heterostrucure nanomaterials has devoted to enhance the significant analytical parameters like sensitivity, selectivity and fast response time. Herein, we report the synthesis of a hybrid heterostructure comprising SnO2 nanoparticles supported mesoporous TiO2, and the obtained nanocomposite were fabricated over glassy carbon electrode (GCE) for the electrochemical oxidation of vitamin B6 in pharmaceutical tablets. The designed SnO2-TiO2/GC modified electrode exhibits well-defined oxidation peak with lowering over-potential and larger signal response compared to the pristine counterparts, and it is mainly due to the formation of abundant active surface layer offered by SnO2 cocatalyst, and thus significantly enhances the electrochemical surface area. Differential pulse voltammetry (DPV) measurements revealed a sharp increase in the anodic peak current upon addition of increasing concentration of vitamin B6. The analytical performance of the modified electrode displayed a wide linear range (0.1-31.4 µM), high selectivity, and excellent sensitivity (759.73 µA mM-1 cm-2) with low detection limit (35 nM). Thus, the resultant mesoporous hybrid nanocatalyst provides an efficient electrochemical platform for determination of various potential analytes.


Subject(s)
Nanocomposites/chemistry , Tin Compounds/chemistry , Titanium/chemistry , Vitamin B 6/analysis , Catalysis , Electrochemical Techniques , Electrodes , Limit of Detection , Oxidation-Reduction , Porosity , Sensitivity and Specificity , Tablets/chemistry
8.
Chemosphere ; 146: 216-25, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26735720

ABSTRACT

Norflurazon (4-chloro-5-(methylamino)-2-[3-(trifluoromethyl)phenyl]pyridazin-3(2H)-one; C12H9ClF3N3O) is an excellent weed controlling agent being practiced in the agricultural lands. The excessive addition or the undissolved Norflurazon (maximum solubility 28 mg/L at 25 °C) enters into the aquatic environment and causes the adverse effects associated with its high concentration. To avoid the perilous effects, visible light assisted photocatalysis set-up coupled with the 42 kHz ultrasound producing bath type sonicator is used to completely mineralize the Norflurazon. TiO2, ZnO and gold loaded zinc oxide nanocatalysts were utilized to study the mineralization of Norflurazon. Au-ZnO shows the greater efficiency for the sonophotocatalytic removal of Norflurazon among the various nanocatalysts employed to study the mineralization. The order of Norflurazon mineralization was sonophotocatalysis > sonocatalysis > photocatalysis. The additive effect was achieved for the sonophotocatalytic degradation. The high performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometric (LCMS) analyses were employed to identify the various intermediates produced during the mineralization. The identification of four pseudo molecular ions and various intermediates using the LCMS analysis evidently suggests the sonophotocatalytic degradation was preceded in various decay pathways. A suitable mechanism has been proposed for the sonophotocatalytic mineralization of Norflurazon.


Subject(s)
Light , Pyridazines/analysis , Ultrasonic Waves , Water Pollutants, Chemical/analysis , Catalysis , Chromatography, High Pressure Liquid , Gold/chemistry , Kinetics , Nanoparticles/chemistry , Pyridazines/chemistry , Pyridazines/radiation effects , Spectrometry, Mass, Electrospray Ionization , Surface Properties , Titanium/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/radiation effects , Zinc Oxide/chemistry
9.
Ultrason Sonochem ; 21(5): 1675-81, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24679677

ABSTRACT

An attempt has been made to render the visible light driven photocatalytic activity to the TiO2 nanocatalysts by loading 1 wt% of rare earth (RE) nanoclusters (Gd(3+), Nd(3+) and Y(3+)) using a low frequency (42 kHz) producing commercial sonicator. The STEM-HAADF analysis confirms that the RE nanoclusters were residing at the surface of the TiO2. Transmission electron microscopic (TEM) and X-ray diffraction (XRD) analyses confirm that the loading of RE nanoclusters cannot make any significant changes in the crystal structure of TiO2. However, the optical properties of the resulted nanocatalysts were significantly modified and the nanocatalysts were employed to study the sonocatalytic, photocatalytic and sonophotocatalytic decolorization as well as mineralization of Acid Blue 113 (AB113). Among the experimented nanocatalysts maximum degradation of AB113 was achieved in the presence Y(3+)-TiO2 nanocatalysts. The decolorization of AB113 in the presence and absence of Y(3+) loaded TiO2 ensues the following order sonolysis

10.
J Hazard Mater ; 263 Pt 1: 36-44, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-23993423

ABSTRACT

In this study, the solar photocatalytic activity (SPA) of WO3/TiO2 photocatalysts synthesized by the sol-gel method with two different percentages of WO3 (2 and 5%wt) was evaluated using malathion as a model contaminant. For comparative purpose bare TiO2 was also prepared by sol-gel process. The powders were characterized by X-ray diffraction (XRD), Raman spectroscopy, diffuse reflectance UV-vis spectroscopy (DRUV-vis), specific surface area by the BET method (SSABET), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and scanning transmission electron microscopy with a high annular angle dark field detector (STEM-HAADF). The XRD, Raman, HRTEM and STEM-HAADF analyses indicated that WO3 was present as a monoclinic crystalline phase with nanometric cluster sizes (1.1 ± 0.1 nm for 2% WO3/TiO2 and 1.35 ± 0.3 nm for 5% WO3/TiO2) and uniformly dispersed on the surface of TiO2. The particle size of the materials was 19.4 ± 3.3 nm and 25.6 ± 3 nm for 2% and 5% WO3/TiO2, respectively. The SPA was evaluated on the degradation of commercial malathion pesticide using natural solar light. The 2% WO3/TiO2 photocatalyst exhibited the best photocatalytic activity achieving 76% of total organic carbon (TOC) abatement after 300 min compared to the 5% WO3/TiO2 and bare TiO2 photocatalysts, which achieved 28 and 47% mineralization, respectively. Finally, experiments were performed to assess 2% WO3/TiO2 catalyst activity on repeated uses; after several successive cycles its photocatalytic activity was retained showing long-term stability.


Subject(s)
Malathion/chemistry , Oxides/radiation effects , Pesticides/chemistry , Titanium/radiation effects , Tungsten/radiation effects , Water Pollutants, Chemical/chemistry , Catalysis , Oxides/chemistry , Photolysis , Sunlight , Titanium/chemistry , Tungsten/chemistry
11.
Nanoscale Res Lett ; 5(1): 180-188, 2009 Nov 06.
Article in English | MEDLINE | ID: mdl-20652132

ABSTRACT

Nanometer size-selected Cu clusters in the size range of 1-5 nm have been produced by a plasma-gas-condensation-type cluster deposition apparatus, which combines a grow-discharge sputtering with an inert gas condensation technique. With this method, by controlling the experimental conditions, it was possible to produce nanoparticles with a strict control in size. The structure and size of Cu nanoparticles were determined by mass spectroscopy and confirmed by atomic force microscopy (AFM) and scanning electron transmission microscopy (STEM) measurements. In order to preserve the structural and morphological properties, the energy of cluster impact was controlled; the energy of acceleration of the nanoparticles was in near values at 0.1 ev/atom for being in soft landing regime. From SEM measurements developed in STEM-HAADF mode, we found that nanoparticles are near sized to those values fixed experimentally also confirmed by AFM observations. The results are relevant, since it demonstrates that proper optimization of operation conditions can lead to desired cluster sizes as well as desired cluster size distributions. It was also demonstrated the efficiency of the method to obtain size-selected Cu clusters films, as a random stacking of nanometer-size crystallites assembly. The deposition of size-selected metal clusters represents a novel method of preparing Cu nanostructures, with high potential in optical and catalytic applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...