Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Chemphyschem ; 20(12): 1624-1629, 2019 06 17.
Article in English | MEDLINE | ID: mdl-31046196

ABSTRACT

Ceria-titania interfaces play a crucial role in different chemical processes but are especially promising for the photocatalytic splitting of water using light in the visible wavelength region when Pt is added to the system. However, the complexity of this hierarchical structure hampers the study of the origin of its outstanding properties. In this article, the structural, electronic and optoelectronic properties of CeO2 /TiO2 systems containing 1D, 2D, and 3D particles of ceria are analyzed by means of density functional calculations. Adsorption sites and vacancy effects have been studied to model Pt adsorption. Density of states calculations and absorption spectra simulations explain the behavior of these systems. Finally, these models are used for the screening of other metals that can be combined with this heterostructure to potentially find more efficient water splitting photocatalysts.

2.
J Phys Chem Lett ; 7(19): 3866-3872, 2016 Oct 06.
Article in English | MEDLINE | ID: mdl-27631665

ABSTRACT

Potassium deposition on TiO2(110) results in reduction of the substrate and formation of loosely bound potassium species that can move easily on the oxide surface to promote catalytic activity. The results of density functional calculations predict a large adsorption energy (∼3.2 eV) with a small barrier (∼0.25 eV) for diffusion on the oxide surface. In scanning tunneling microscopy images, the adsorbed alkali atoms lose their mobility when in contact with surface OH groups. Furthermore, K adatoms facilitate the dissociation of water on the titania surface. The K-(OH) species generated are good sites for the binding of gold clusters on the TiO2(110) surface, producing Au/K/TiO2(110) systems with high activity for the water-gas shift.

3.
J Phys Chem Lett ; 7(13): 2627-39, 2016 Jul 07.
Article in English | MEDLINE | ID: mdl-27327114

ABSTRACT

Inverse oxide/metal catalysts have shown to be excellent systems for studying the role of the oxide and oxide-metal interface in catalytic reactions. These systems can have special structural and catalytic properties due to strong oxide-metal interactions difficult to attain when depositing a metal on a regular oxide support. Oxide phases that are not seen or are metastable in a bulk oxide can become stable in an oxide/metal system opening the possibility for new chemical properties. Using these systems, it has been possible to explore fundamental properties of the metal-oxide interface (composition, structure, electronic state), which determine catalytic performance in the oxidation of CO, the water-gas shift and the hydrogenation of CO2 to methanol. Recently, there has been a significant advance in the preparation of oxide/metal catalysts for technical or industrial applications. One goal is to identify methods able to control in a precise way the size of the deposited oxide particles and their structure on the metal substrate.

4.
J Am Chem Soc ; 137(32): 10104-7, 2015 Aug 19.
Article in English | MEDLINE | ID: mdl-26218072

ABSTRACT

Capture and recycling of CO2 into valuable chemicals such as alcohols could help mitigate its emissions into the atmosphere. Due to its inert nature, the activation of CO2 is a critical step in improving the overall reaction kinetics during its chemical conversion. Although pure gold is an inert noble metal and cannot catalyze hydrogenation reactions, it can be activated when deposited as nanoparticles on the appropriate oxide support. In this combined experimental and theoretical study, it is shown that an electronic polarization at the metal-oxide interface of Au nanoparticles anchored and stabilized on a CeO(x)/TiO2 substrate generates active centers for CO2 adsorption and its low pressure hydrogenation, leading to a higher selectivity toward methanol. This study illustrates the importance of localized electronic properties and structure in catalysis for achieving higher alcohol selectivity from CO2 hydrogenation.

5.
Science ; 345(6196): 546-50, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-25082699

ABSTRACT

The transformation of CO2 into alcohols or other hydrocarbon compounds is challenging because of the difficulties associated with the chemical activation of CO2 by heterogeneous catalysts. Pure metals and bimetallic systems used for this task usually have low catalytic activity. Here we present experimental and theoretical evidence for a completely different type of site for CO2 activation: a copper-ceria interface that is highly efficient for the synthesis of methanol. The combination of metal and oxide sites in the copper-ceria interface affords complementary chemical properties that lead to special reaction pathways for the CO2→CH3OH conversion.

8.
Phys Chem Chem Phys ; 13(23): 11340-50, 2011 Jun 21.
Article in English | MEDLINE | ID: mdl-21566817

ABSTRACT

The interaction between implanted nitrogen atoms, adsorbed gold atoms, and oxygen vacancies at the anatase TiO(2)(101) surface is investigated by means of periodic density functional theory calculations. Substitutional and interstitial configurations for the N-doping have been considered, as well as several adsorption sites for Au adatoms and different types of vacancies. Our total energy calculations suggest that a synergetic effect takes place between the nitrogen doping on one hand and the adsorption of gold and vacancy formation on the other hand. Thus, while pre-implanted nitrogen increases the adsorption energy for gold and decreases the energy required for the formation of an oxygen vacancy, pre-adsorbed gold or the presence of oxygen vacancies favors the nitrogen doping of anatase. The analysis of the electronic structure and electron densities shows that a charge transfer takes place between implanted-N, adsorbed Au and oxygen vacancies. Moreover, it is predicted that the creation of vacancies on the anatase surface modified with both implanted nitrogen and supported gold atoms produces migration of substitutional N impurities from bulk to surface sites. In any case, the most stable configurations are those where N, Au and vacancies are close to each other.

9.
J Am Chem Soc ; 133(10): 3444-51, 2011 Mar 16.
Article in English | MEDLINE | ID: mdl-21341793

ABSTRACT

A Cu(111) surface displays a low activity for the oxidation of carbon monoxide (2CO + O(2) → 2CO(2)). Depending on the temperature, background pressure of O(2), and the exposure time, one can get chemisorbed O on Cu(111) or a layer of Cu(2)O that may be deficient in oxygen. The addition of ceria nanoparticles (NPs) to Cu(111) substantially enhances interactions with the O(2) molecule and facilitates the oxidation of the copper substrate. In images of scanning tunneling microscopy, ceria NPs exhibit two overlapping honeycomb-type moiré structures, with the larger ones (H(1)) having a periodicity of 4.2 nm and the smaller ones (H(2)) having a periodicity of 1.20 nm. After annealing CeO(2)/Cu(111) in O(2) at elevated temperatures (600-700 K), a new phase of a Cu(2)O(1+x) surface oxide appears and propagates from the ceria NPs. The ceria is not only active for O(2) dissociation, but provides a much faster channel for oxidation than the step edges of Cu(111). Exposure to CO at 550-750 K led to a partial reduction of the ceria NPs and the removal of the copper oxide layer. The CeO(x)/Cu(111) systems have activities for the 2CO + O(2) → 2CO(2) reaction that are comparable or larger than those reported for surfaces of expensive noble metals such as Rh(111), Pd(110), and Pt(100). Density-functional calculations show that the supported ceria NPs are able to catalyze the oxidation of CO due to their special electronic and chemical properties. The configuration of the inverse oxide/metal catalyst opens new interesting routes for applications in catalysis.

10.
J Chem Theory Comput ; 7(1): 56-65, 2011 Jan 11.
Article in English | MEDLINE | ID: mdl-26606218

ABSTRACT

The outstanding catalytic properties of cerium oxides rely on the easy Ce(3+) ↔ Ce(4+) redox conversion, which however constitutes a challenge in density functional based theoretical chemistry due to the strongly correlated nature of the 4f electrons present in the reduced materials. In this work, we report an analysis of the performance of five exchange-correlation functionals (HH, HHLYP, PBE0, B3LYP, and B1-WC) implemented in the CRYSTAL06 code to describe three properties of ceria: crystal structure, band gaps, and reaction energies of the CeO2 → Ce2O3 process. All five functionals give values for cell parameters that are in fairly good agreement with experiment, although the PBE0 hybrid functional is found to be the most accurate. Band gaps, 2p-4f-5d in the case of CeO2 and 4f-5d in the case of Ce2O3, are found to be, in general, overestimated and drop off when the amount of Hartree-Fock exchange in the exchange-correlation functional decreases. In contrast, the reaction energies are found to be underestimated, and increase when the amount of HF exchange lowers. Overall, at its standard formulation, the B1-WC functional seems to be the best choice as it provides good band gaps and reaction energies, and very reasonable crystal parameters.

11.
J Chem Phys ; 132(10): 104703, 2010 Mar 14.
Article in English | MEDLINE | ID: mdl-20232980

ABSTRACT

The structural and electronic properties of CeO(x) species supported on the rutile TiO(2)(110) surface have been examined by means of periodic density-functional calculations that use a generalized gradient approximation functional including a Hubbard-like type correction. Deposition of Ce atoms leads in a first step to Ce(3+) ions bound to the surface through bridge and in-plane oxygen atoms, the released electrons occupying the Ti 3d empty orbitals. Further addition of Ce and molecular oxygen gives place to Ce(2)O(3) dimers diagonally arranged on the surface, in agreement with the spots observed in the scanning tunnel microscope images. The formation process of CeO(x) nanoparticles (NPs) on the TiO(2) surface is highly exothermic and our calculations show that the redox properties of the Ce(III)-Ce(IV) couple are significantly altered when it is supported on TiO(2). In particular the reactivity against CO/O(2) indicates that on the surface the presence of Ce(III) is favored over Ce(IV) species. Our results also indicate that the CeO(x)/TiO(2) interface should be seen like a real mixed-metal oxide rather than a supported NP of ceria. Finally, in the context of the high catalytic activity of the M/CeO(x)/TiO(2) (M=Au,Cu,Pt) systems in the water-gas shift reaction, we have examined the dissociation of water on the CeO(x)/TiO(2) surface and estimated a barrier as small as 0.04 eV, i.e. approximately 8 times smaller than that computed for a TiO(2) oxygen vacancy. This result agrees with the experimental superior catalytic activity of the M/CeO(x)/TiO(2) systems over M/TiO(2).

12.
J Am Chem Soc ; 132(1): 356-63, 2010 Jan 13.
Article in English | MEDLINE | ID: mdl-19994897

ABSTRACT

At small coverages of ceria on TiO(2)(110), the CeO(x) nanoparticles have an unusual coordination mode. Scanning tunneling microscopy and density-functional calculations point to the presence of Ce(2)O(3) dimers, which form diagonal arrays that have specific orientations of 0, 24, and 42 degrees with respect to the [1 -1 0] direction of the titania substrate. At high coverages of ceria on TiO(2)(110), the surface exhibits two types of terraces. In one type, the morphology is not very different from that observed at low ceria coverage. However, in the second type of terrace, there is a compact array of ceria particles with structures that do not match the structures of CeO(2)(111) or CeO(2)(110). The titania substrate imposes on the ceria nanoparticles nontypical coordination modes, enhancing their chemical reactivity. This phenomenon leads to a larger dispersion of supported metal nanoparticles (M = Au, Cu, Pt) and makes possible the direct participation of the oxide in catalytic reactions. The M/CeO(x)/TiO(2)(110) surfaces display an extremely high catalytic activity for the water-gas shift reaction that follows the sequence Au/CeO(x)/TiO(2)(110) < Cu/CeO(x)/TiO(2)(110) < Pt/CeO(x)/TiO(2)(110). For low coverages of Cu and CeO(x), Cu/CeO(x)/TiO(2)(110) is 8-12 times more active than Cu(111) or Cu/ZnO industrial catalysts. In the M/CeO(x)/TiO(2)(110) systems, there is a strong coupling of the chemical properties of the admetal and the mixed-metal oxide: The adsorption and dissociation of water probably take place on the oxide, CO adsorbs on the admetal nanoparticles, and all subsequent reaction steps occur at the oxide-admetal interface. The high catalytic activity of the M/CeO(x)/TiO(2)(110) surfaces reflects the unique properties of the mixed-metal oxide at the nanometer level.

14.
Proc Natl Acad Sci U S A ; 106(13): 4975-80, 2009 Mar 31.
Article in English | MEDLINE | ID: mdl-19276120

ABSTRACT

Mixed-metal oxides play a very important role in many areas of chemistry, physics, materials science, and geochemistry. Recently, there has been a strong interest in understanding phenomena associated with the deposition of oxide nanoparticles on the surface of a second (host) oxide. Here, scanning tunneling microscopy, photoemission, and density-functional calculations are used to study the behavior of ceria nanoparticles deposited on a TiO(2)(110) surface. The titania substrate imposes nontypical coordination modes on the ceria nanoparticles. In the CeO(x)/TiO(2)(110) systems, the Ce cations adopt an structural geometry and an oxidation state (+3) that are quite different from those seen in bulk ceria or for ceria nanoparticles deposited on metal substrates. The increase in the stability of the Ce(3+) oxidation state leads to an enhancement in the chemical and catalytic activity of the ceria nanoparticles. The codeposition of ceria and gold nanoparticles on a TiO(2)(110) substrate generates catalysts with an extremely high activity for the production of hydrogen through the water-gas shift reaction (H(2)O + CO --> H(2) + CO(2)) or for the oxidation of carbon monoxide (2CO + O(2) --> 2CO(2)). The enhanced stability of the Ce(3+) state is an example of structural promotion in catalysis described here on the atomic level. The exploration of mixed-metal oxides at the nanometer level may open avenues for optimizing catalysts through stabilization of unconventional surface structures with special chemical activity.

15.
J Am Chem Soc ; 130(36): 12056-63, 2008 Sep 10.
Article in English | MEDLINE | ID: mdl-18700756

ABSTRACT

N-doping of titania makes photocatalytic activity possible for the splitting of water, and other reactions, under visible light. Here, we show from both theory and experiment that Au preadsorption on TiO2 surfaces significantly increases the reachable amount of N implanted in the oxide. The stabilization of the embedded N is due to an electron transfer from the Au 6s levels toward the N 2p levels, which also increases the Au-surface adhesion energy. Theoretical calculations predict that Au can also stabilize embedded N in other metal oxides with photocatalytic activity, such as SrTiO3 and ZnO, producing new states above the valence band or below the conduction band of the oxide. In experiments, the Au/TiN(x)O(2-y) system was found to be more active for the dissociation of water than TiO2, Au/TiO2, or TiO(2-y). Furthermore, the Au/TiN(x)O(2-y) surfaces were able to catalyze the production of hydrogen through the water-gas shift reaction (WGS) at elevated temperatures (575-625 K), displaying a catalytic activity superior to that of pure copper (the most active metal catalysts for the WGS) or Cu nanoparticles supported on ZnO.

16.
J Phys Chem B ; 110(23): 11600-3, 2006 Jun 15.
Article in English | MEDLINE | ID: mdl-16771437

ABSTRACT

The catalytic properties toward CO combustion of an encapsulated cluster, V@Au12-, have been explored by means of plane-wave pseudopotential density-functional theory calculations. Single adsorption of both O2 and CO as well as coadsorption have been considered. The adsorption energy for the O2 molecule is about 0.3-0.4 eV which limits its use to low temperatures. However, in contrast to what happens for pure gold clusters, this system shows a remarkable capacity to bind a high number of oxygen molecules. Moreover, its icosahedral cluster is able to bind 12 CO molecules, since all of the gold atoms are available. The bond between the metal cluster and the oxygen molecule mainly arises from a charge transfer from the metal toward the pi(g) antibonding O2 orbitals, while in the case of CO molecule, the classical sigma-donation pi-back-donation mechanism is observed. Finally, no coadsorption effects are found when both molecules are adsorbed, the interaction properties between the cluster and the substrates remain basically unaltered.

SELECTION OF CITATIONS
SEARCH DETAIL
...