Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Res Sq ; 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37461443

ABSTRACT

The novel long non-coding RNA (lncRNA) Leat1 is extraordinarily conserved in both its location (syntenic with EfnB2, an essential gene in anogenital patterning) and sequence. Here we show that Leat1 is upregulated following the testosterone surge from the developing testis and directly interacts with EfnB2, positively regulating its expression. Leat1 expression is suppressed by estrogen, which in turn suppresses the expression of EfnB2. Moreover, the loss of Leat1 leads to reduced EfnB2, resulting in a severe hypospadias phenotype. The human LEAT1 gene is also co-expressed with EFNB2 in the developing human penis suggesting a conserved function for this gene in urethral closure. Together our data identify Leat1 as a novel molecular regulator of urethral closure and implicate it as a target of endocrine disruption in the etiology of hypospadias.

2.
Sex Dev ; 9(3): 162-72, 2015.
Article in English | MEDLINE | ID: mdl-26112156

ABSTRACT

Mice are routinely used to study the development of the external genitalia and, in particular, the process of male urethral closure. This is because misplacement of the male penile urethra, or hypospadias, is amongst the most common birth defects reported in humans. While mice present a tractable model to study penile development, several structures differ between mice and humans, and there is a lack of consensus in the literature on their annotation and developmental origins. Defining the ontology of the mouse prepuce is especially important for the relevance and interpretation of mouse models of hypospadias to human conditions. We have developed a detailed annotation of the adult mouse penis that addresses these differences and enables an accurate comparison of murine and human hypospadias phenotypes. Through MRI data, gross morphology and section histology, we define the origin of the mouse external and internal prepuces, their relationship to the single human foreskin as well as provide a comprehensive view of the various structures of the mouse penis and their associated muscle attachments within the body. These data are combined to annotate structures in a novel 3D adult penis atlas that can be downloaded, viewed at any angle, and manipulated to examine the relationship of various structures.


Subject(s)
Aging/physiology , Anatomy, Artistic , Atlases as Topic , Penis/anatomy & histology , Animals , Hypospadias/pathology , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Male , Mice , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...