Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Biomolecules ; 11(12)2021 12 06.
Article in English | MEDLINE | ID: mdl-34944482

ABSTRACT

Zein is a type of prolamin storage protein that has a variety of biomedical and industrial applications. Due to the considerable genetic variability and polyploidity of the starting material, as well as the extraction methods used, the characterization of the protein composition of zein requires a combination of different analytical processes. Therefore, we combined modern analytical methods such as mass spectrometry (MS), Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), atomic force microscopy (AFM), or Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) for a better characterization of the extracted zein. In this study, we present an enhanced eco-friendly extraction method, including grinding and sieving corn seeds, for prolamins proteins using an ultrasonic extraction methodology. The use of an ultrasonic homogenizer, 65% ethanol extraction buffer, and 710 µm maize granulation yielded the highest protein extraction from all experimental conditions we employed. An SDS PAGE analysis of the extracted zein protein mainly revealed two intense bands of approximatively 20 and 23 kDa, suggesting that the extracted zein was mostly α-zein monomer. Additionally, MS analysis revealed as a main component the α-zein PMS2 (Uniprot accession no. P24450) type protein in the maize flour extract. Moreover, AFM studies show that extracting zein with a 65% ethanol and a 710 µm granulation yields a homogeneous content that could allow these proteins to be employed in future medical applications. This research leads to a better understanding of zeins content critical for developing new applications of zein in food and pharmaceutical industries, such as biocompatible medical vehicles based on polyplexes complex nanoparticles of zein with antimicrobial or drug delivery properties.


Subject(s)
Proteomics/methods , Zea mays/metabolism , Zein/isolation & purification , Electrophoresis, Polyacrylamide Gel , Green Chemistry Technology , Mass Spectrometry , Microscopy, Atomic Force , Plant Proteins/isolation & purification , Spectroscopy, Fourier Transform Infrared , Ultrasonics
2.
Environ Sci Pollut Res Int ; 27(2): 1386-1396, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31749004

ABSTRACT

This paper presents the results from a study on the current state of tailing dump, surrounding soil and water in the region of Tarnita-Suceava, Romania. A number of chemical analyses and germination tests were applied in an attempt to estimate the ability of soil to maintain the plants growing, the bioavailability, and heavy metals uptake. Total heavy metals, exchangeable metals, acidity, and carbon and nitrogen content were determined. A modified sequential extraction method was used to determine geochemical phase distribution of heavy metals. The most abundant heavy metals in the studied samples were Cu, Zn, and Pb. Elevated concentrations of As were also found. The results from sequential extraction revealed that up to 51% of copper was retained by amorphous and crystalline iron oxides in soil. Higher content of lead was noticed in amorphous iron oxide fraction. The heavy metal concentration in river water during dry season varied from 0.13 mg/L (Fe) to 4.2 mg/L (Zn) and was below the maximum contamination level for drinking water. The soil toxicity and heavy metal bioavailability of tailing dump material and surrounding soils were studied by germination tests. The germinated plantlets on the studied soils were found to accumulate elevated concentrations of heavy metals thus indicating the bioavailability of soil contaminants. Soil decontamination by distilled water or magnesium nitrate solution was found to be efficient enough to improve the capability of the studied soils to support the germination process.


Subject(s)
Environmental Pollution , Metals, Heavy , Rivers/chemistry , Soil Pollutants , Water Pollution , Copper , Environmental Monitoring , Romania , Soil
3.
Eur J Mass Spectrom (Chichester) ; 22(2): 97-104, 2016.
Article in English | MEDLINE | ID: mdl-27419903

ABSTRACT

The NAP peptide (H(2)N-(1)NAPVSIPQ(8)-CONH(2)) is a truncated version of the activity-dependent neuroprotective protein. Its neuroprotective activities consist of the inhibition of Aß(25-35) and Aß(1-40) fibrillogenesis as well as protection against Aß-induced neurotoxicity and prevention of microtubule disruption associated with Alzheimer's disease. Therefore, we synthesized NAP and its mutant peptide with the sequence: H(2)N-(1)NAPVCIPQ(8)-COOH (NAPCOH), by replacing serine S(5) with cysteine C(5). Both native and mutant peptides were further used to study their interaction with iron ions. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry, Fourier transform infrared spectroscopy and also atomic force microscopy were used to probe Fe(3+) binding to both peptides. Contrary to the expected results, the investigated peptides underwent different oxidation processes, with resultant reduced Fe(2+) ions. These ions, and not the original Fe(3+) ions, were found to bind to each of non-oxidized peptides.


Subject(s)
Peptides , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Amino Acid Sequence , Cysteine , Humans , Ions , Iron
4.
Ultrason Sonochem ; 29: 93-103, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26584989

ABSTRACT

The need for a simple and accurate method for protein estimation in alcoholic extracts led to the reexamination of the optimum conditions of a colorimetric assay based on the biuret reaction. Sonication time and the other experimental parameters were optimized after kinetics study on the extraction of either zein or total proteins. Zein extraction and purity were investigated by (1)H and (13)C NMR spectroscopy, SDS-PAGE electrophoresis, and UV-visible spectrophotometry (UV-vis). A zein assay was proposed, which involves the reaction of copper ions in copper phosphate powder with zein extracted in ethanolic solutions under strong alkaline environment. Furthermore, we extended this procedure to determine total proteins in maize samples simultaneously with their ultrasonic-assisted (US) extraction with an alkaline-alcoholic solution. Proteins in both types of extracts were well characterized by UV-vis spectroscopy. However, the 545 nm absorbance of the violet-colored supernatants which is proportional to the protein content was found to be the key parameter of the improved biuret-based protein assay. Comparison of values obtained by this procedure and by Micro-Kjeldahl method was in excellent agreement. A scaled-down procedure agreed well with the standard procedure. Enhanced accuracy and repeatability was found in protein determination in maize using the modified biuret method. The optimization of reagent concentrations and incubation times were studied as well.


Subject(s)
Seeds/chemistry , Ultrasonic Waves , Zea mays/chemistry , Zein/analysis , Zein/isolation & purification , Centrifugation , Copper/chemistry , Reference Standards , Zein/chemistry
5.
Eur J Mass Spectrom (Chichester) ; 21(2): 97-102, 2015.
Article in English | MEDLINE | ID: mdl-26181283

ABSTRACT

The interaction of coenzyme A (CoA) with mercury ions was investigated using electrospray ionization mass spectrometry and circular dichroism spectroscopy. Our results indicated a 1:1 stoichiometric CoA-Hg complex at physiological pH. Furthermore, the CoA conformation considerably changed in the presence of mercury ions. In addition, a by-product of the reaction, thiocoenzyme A, was identified using mass spectrometry.

6.
Biochemistry ; 54(15): 2508-19, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25839323

ABSTRACT

When the Na,K-ATPase pumps at each turnover two K(+) ions into the cytoplasm, this translocation consists of several reaction steps. First, the ions diffuse consecutively from the extracellular phase through an access pathway to the binding sites where they are coordinated. In the next step, the enzyme is dephosphorylated and the ions are occluded inside the membrane domain. The subsequent transition to the E1 conformation produces a deocclusion of the binding sites to the cytoplasmic side of the membrane and allows in the last steps ion dissociation and diffusion to the aqueous phase. The interaction and competition of K(+) with various quaternary organic ammonium ions have been used to gain insight into the molecular mechanism of the ion binding process from the extracellular side in the P-E2 conformation of the enzyme. Using the electrochromic styryl dye RH421, evidence has been obtained that the access pathway consists of a wide and water-filled funnel-like part that is accessible also for bulky cations such as the benzyltriethylammonium ion, and a narrow part that permits passage only of small cations such as K(+) and NH4(+) in a distinct electrogenic way. Benzyltriethylammonium ions inhibit K(+) binding in a competitive manner that can be explained by a stopper-like function at the interface between the wide and narrow parts of the access pathway. In contrast to other quaternary organic ammonium ions, benzyltriethylammonium ions show a specific binding to the ion pump in a position inside the access pathway where it blocks effectively the access to the binding sites.


Subject(s)
Fluorescent Dyes/chemistry , Potassium/chemistry , Quaternary Ammonium Compounds/chemistry , Sodium-Potassium-Exchanging ATPase/chemistry , Animals , Binding Sites , Potassium/metabolism , Rabbits , Sodium-Potassium-Exchanging ATPase/metabolism
7.
Article in English | MEDLINE | ID: mdl-24895780

ABSTRACT

We report here the effectiveness of gas chromatography mass spectrometry techniques in establishing the ferrite-associated photocatalytic degradation mechanism of pesticide 2,4-dinitrophenol (2,6-DNP). Unlike the previously discussed DNP-degradation mechanisms that involve either oxidation or reduction reactions, ferrite-based ultraviolet (UV) photodegradation of DNP affords the nontoxic 6-hydroxy-3,5-dinitrohexa-2,4-dienal by an unusual water addition to the benzene core. We searched for and demonstrated the presence of an epoxide of DNP within the photodegradation process, which may unambiguously explain the novel photochemical mechanism. During the 15 min UV photoinduced process, DNP degradation efficiency on the zinc ferrite catalyst was calculated to be 82%, whereas the first-order kinetic rate constant k was as high as 3.4 x 10(-2)min(-1).

8.
Biometals ; 24(6): 1115-21, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21698371

ABSTRACT

Sulfur containing biomolecules are involved in complexes with mercury. CoA is an important cofactor for many enzymes involved in metabolic processes. Fatty acyl-CoA-thioesters, substrates of mitochondrial ß-oxidation, are sulfur containing compounds and potential mercury ligands. The CoA-Hg(2+) complex can be easily assessed by UV-Vis spectroscopy or indirectly by antibacterial tests that reconfirmed the protective role of CoA on E. coli. The characteristics of these complexes were determined by means of FTIR spectroscopy. The reverse phase liquid chromatography combined with electrospray ionization tandem mass spectrometry was used for detection of the side-product that resulted through the cleavage of thioesters in the presence of mercury. An unexpected result was the detection of octathioic acid as a product. Our study shows that mitochondrial ß-oxidation can be affected by thioesters depletion assisted by Hg(2+). The GC-MS technique could be used to detect some possible mitochondrial injuries due to the heavy metal ions.


Subject(s)
Acyl Coenzyme A/chemistry , Coenzyme A/chemistry , Mercury/chemistry , Fatty Acids/chemistry , Gas Chromatography-Mass Spectrometry , Models, Theoretical , Spectroscopy, Fourier Transform Infrared
9.
J Biomed Sci ; 17 Suppl 1: S23, 2010 Aug 24.
Article in English | MEDLINE | ID: mdl-20804598

ABSTRACT

The mitochondrial pH gradient across the inner-membrane is stabilised by buffering of the matrix. A low-molecular mass buffer compound has to be localised in the matrix to maintain its alkaline pH value. Taurine is found ubiquitously in animal cells with concentrations in the millimolar range and its pKa value is determined to 9.0 (25 degrees C) and 8.6 (37 degrees C), respectively. Localisation of such a low-molecular buffer in the mitochondrial matrix, transforms the matrix into a biochemical reaction chamber for the important matrix-localised enzyme systems. Three acyl-CoA dehydrogenase enzymes, which are pivotal for beta-oxidation of fatty acids, are demonstrated to have optimal activity in a taurine buffer. By application of the model presented, taurine depletion caused by hyperglycemia could provide a link between mitochondrial dysfunction and diabetes.


Subject(s)
Mitochondria/metabolism , Taurine/metabolism , Acyl-CoA Dehydrogenases/metabolism , Animals , Buffers , Cell Respiration , Hydrogen-Ion Concentration , Membrane Potentials/physiology , Molecular Structure , Oxidation-Reduction , Taurine/chemistry
10.
Biochemistry ; 46(9): 2497-509, 2007 Mar 06.
Article in English | MEDLINE | ID: mdl-17286388

ABSTRACT

Glu376, the base involved in substrate alphaH+ abstraction at the active center of medium-chain acyl-CoA dehydrogenase (MCAD), has been mutated to Gln and Gly. The mutants are active; however, their rates of dehydrogenation are lowered by approximately 5 orders of magnitude. Binding of the substrate octanoyl-CoA to Glu376Gln-MCAD involves (at least) two steps. The ensuing dehydrogenation reaction that corresponds to reduction of the flavin cofactor also occurs in two phases. These are interpreted to consist of a first, reversible step, followed by a slower, practically irreversible one. For Glu376Gln-MCAD, the log of the rates of dehydrogenation increases linearly with pH (slope = 1) in the pH range of 6-10, suggesting HO- as a reactant. The rates of the same reactions in D2O have the same pD profile and reflect a solvent kinetic isotope effect (SKIE) of approximately 8.5. Glu376Gln+Glu99Gly-MCAD (studied to assess the role of Glu99 also present at the bottom of the active center cavity) has activities and activity profiles similar to those of Glu376Gln-MCAD. This excludes Glu99 as the active center base for Glu376Gln-MCAD catalysis. Proton inventories for the two phases of the dehydrogenation reaction were investigated at 4 and 25 degrees C. The inventories at 25 degrees C reflect a SKIE of approximately 4.5; the profiles are "bowl-shaped", in which a transition-state contribution predominates. The profiles for the 4 degrees C reaction are very unusual. That for the first phase can be analyzed on a two-step model with one step (80% rate-limiting) having a conformational reorganization with an isotope effect of 90-100, from small isotope effects at many protein sites, and the other step (20% rate-limiting) having an inverse isotope effect of ca. 2, characteristic of the reaction of hydroxide ion as a base. For the second phase, only a contribution from many protein sites with a KIE of approximately 4.5 is observed. The results are compatible with a very rigid active site framework that must undergo rearrangements for dehydrogenation to take place, and specifically to allow access of HO-, the reactant that must neutralize the H+ abstracted from the alphaC-H substrate. The large isotope effects are attributed to the changes in state of several H-bonds that occur during the process.


Subject(s)
Acyl-CoA Dehydrogenase/metabolism , Solvents/chemistry , Acyl-CoA Dehydrogenase/genetics , Binding Sites , Humans , Hydrogen-Ion Concentration , Isotopes , Mutagenesis
SELECTION OF CITATIONS
SEARCH DETAIL
...