Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Ann Oper Res ; : 1-24, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35233127

ABSTRACT

This paper addresses the interpretability problem of non-parametric option pricing models by using the explainable artificial intelligence (XAI) approach. We study call options written on the S&P 500 stock market index across three market regimes: pre-COVID-19, COVID-19 market crash, and post-COVID-19 recovery. Our comparative option pricing exercise demonstrates the superiority of the random forest and extreme gradient boosting models for each market regime. We also show that the model's pricing accuracy has worsened from the pre-COVID-19 to the recovery period. Moneyness was the most important price determinants across the market regimes, while the implied volatility and time-to-maturity inputs contributed intermittently to a lesser extent. During the COVID-19 crash, open interest gained more economic importance due to the increased behavioral tendencies of traders consistent with market distress.

2.
IEEE Trans Neural Netw ; 20(4): 626-37, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19273045

ABSTRACT

This paper investigates a nonparametric modular neural network (MNN) model to price the S&P-500 European call options. The modules are based on time to maturity and moneyness of the options. The option price function of interest is homogeneous of degree one with respect to the underlying index price and the strike price. When compared to an array of parametric and nonparametric models, the MNN method consistently exerts superior out-of-sample pricing performance. We conclude that modularity improves the generalization properties of standard feedforward neural network option pricing models (with and without the homogeneity hint).

SELECTION OF CITATIONS
SEARCH DETAIL