Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Ecology ; 102(7): e03369, 2021 07.
Article in English | MEDLINE | ID: mdl-33864262

ABSTRACT

Organismal locomotion mediates ecological interactions and shapes community dynamics. Locomotion is constrained by intrinsic and environmental factors and integrating these factors should clarify how locomotion affects ecology across scales. We extended general theory based on metabolic scaling and biomechanics to predict the scaling of five locomotor performance traits: routine speed, maximum speed, maximum acceleration, minimum powered turn radius, and angular speed. To test these predictions, we used phylogenetically informed analyses of a new database with 884 species and found support for our quantitative predictions. Larger organisms were faster but less maneuverable than smaller organisms. Routine and maximum speeds scaled with body mass to 0.20 and 0.17 powers, respectively, and plateaued at higher body masses, especially for maximum speed. Acceleration was unaffected by body mass. Minimum turn radius scaled to a 0.19 power, and the 95% CI included our theoretical prediction, as we predicted. Maximum angular speed scaled higher than predicted but in the same direction. We observed universal scaling among locomotor modes for routine and maximum speeds but the intercepts varied; flying organisms were faster than those that swam or ran. Acceleration was independent of size in flying and aquatic taxa but decreased with body mass in land animals, possibly due to the risk of injury large, terrestrial organisms face at high speeds and accelerations. Terrestrial mammals inhabiting structurally simple habitats tended to be faster than those in complex habitats. Despite effects of body size, locomotor mode, and habitat complexity, universal scaling of locomotory performance reveals the general ways organisms move across Earth's complex environments.


Subject(s)
Locomotion , Mammals , Animals , Biomechanical Phenomena , Body Size
2.
Glob Ecol Biogeogr ; 28(5): 548-556, 2019 May.
Article in English | MEDLINE | ID: mdl-31217748

ABSTRACT

ISSUE: Geodiversity (i.e., the variation in Earth's abiotic processes and features) has strong effects on biodiversity patterns. However, major gaps remain in our understanding of how relationships between biodiversity and geodiversity vary over space and time. Biodiversity data are globally sparse and concentrated in particular regions. In contrast, many forms of geodiversity can be measured continuously across the globe with satellite remote sensing. Satellite remote sensing directly measures environmental variables with grain sizes as small as tens of metres and can therefore elucidate biodiversity-geodiversity relationships across scales. EVIDENCE: We show how one important geodiversity variable, elevation, relates to alpha, beta and gamma taxonomic diversity of trees across spatial scales. We use elevation from NASA's Shuttle Radar Topography Mission (SRTM) and c. 16,000 Forest Inventory and Analysis plots to quantify spatial scaling relationships between biodiversity and geodiversity with generalized linear models (for alpha and gamma diversity) and beta regression (for beta diversity) across five spatial grains ranging from 5 to 100 km. We illustrate different relationships depending on the form of diversity; beta and gamma diversity show the strongest relationship with variation in elevation. CONCLUSION: With the onset of climate change, it is more important than ever to examine geodiversity for its potential to foster biodiversity. Widely available satellite remotely sensed geodiversity data offer an important and expanding suite of measurements for understanding and predicting changes in different forms of biodiversity across scales. Interdisciplinary research teams spanning biodiversity, geoscience and remote sensing are well poised to advance understanding of biodiversity-geodiversity relationships across scales and guide the conservation of nature.

3.
Science ; 363(6425)2019 01 25.
Article in English | MEDLINE | ID: mdl-30679341

ABSTRACT

Species richness of marine mammals and birds is highest in cold, temperate seas-a conspicuous exception to the general latitudinal gradient of decreasing diversity from the tropics to the poles. We compiled a comprehensive dataset for 998 species of sharks, fish, reptiles, mammals, and birds to identify and quantify inverse latitudinal gradients in diversity, and derived a theory to explain these patterns. We found that richness, phylogenetic diversity, and abundance of marine predators diverge systematically with thermoregulatory strategy and water temperature, reflecting metabolic differences between endotherms and ectotherms that drive trophic and competitive interactions. Spatial patterns of foraging support theoretical predictions, with total prey consumption by mammals increasing by a factor of 80 from the equator to the poles after controlling for productivity.


Subject(s)
Biodiversity , Body Temperature Regulation , Food Chain , Metabolism , Predatory Behavior , Animals , Birds/physiology , Fishes/physiology , Mammals/physiology , Models, Biological , Oceans and Seas , Phylogeny , Reptiles/physiology , Temperature
4.
Biol Lett ; 14(1)2018 01.
Article in English | MEDLINE | ID: mdl-29367214

ABSTRACT

Ecologists have often predicted that species' niche breadths should decline towards the Equator. Dan Janzen arrived at this prediction based on climatic constraints, while Robert MacArthur argued that a latitudinal gradient in resource specialization drives the pattern. This idea has some support when it comes to thermal niches, but has rarely been explored for other niche dimensions. Body size is linked to niche dimensions related to diet, competition and environmental tolerance in vertebrates. We identified 68 pairs of tropical and nontropical sister bird species using a comprehensive phylogeny and used the VertNet specimen database to ask whether tropical birds have lower intraspecific body-size variation than their nontropical sister species. Our results show that tropical species have less intraspecific variability in body mass ([Formula: see text]; p = 0.009). Variation in body-size variability was poorly explained by both abiotic and biotic drivers; thus the mechanisms underlying the pattern are still unclear. The lower variation in body size of tropical bird species may have evolved in response to more stable climates and resource environments.


Subject(s)
Biological Variation, Population/physiology , Birds/anatomy & histology , Birds/physiology , Body Size/physiology , Tropical Climate , Animals , Birds/classification , Diet , Environment , Phylogeny
5.
Proc Natl Acad Sci U S A ; 112(45): 13934-9, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26508641

ABSTRACT

The fundamental features of growth may be universal, because growth trajectories of most animals are very similar, but a unified mechanistic theory of growth remains elusive. Still needed is a synthetic explanation for how and why growth rates vary as body size changes, both within individuals over their ontogeny and between populations and species over their evolution. Here, we use Bertalanffy growth equations to characterize growth of ray-finned fishes in terms of two parameters, the growth rate coefficient, K, and final body mass, m∞. We derive two alternative empirically testable hypotheses and test them by analyzing data from FishBase. Across 576 species, which vary in size at maturity by almost nine orders of magnitude, K scaled as [Formula: see text]. This supports our first hypothesis that growth rate scales as [Formula: see text] as predicted by metabolic scaling theory; it implies that species that grow to larger mature sizes grow faster as juveniles. Within fish species, however, K scaled as [Formula: see text]. This supports our second hypothesis, which predicts that growth rate scales as [Formula: see text] when all juveniles grow at the same rate. The unexpected disparity between across- and within-species scaling challenges existing theoretical interpretations. We suggest that the similar ontogenetic programs of closely related populations constrain growth to [Formula: see text] scaling, but as species diverge over evolutionary time they evolve the near-optimal [Formula: see text] scaling predicted by metabolic scaling theory. Our findings have important practical implications because fish supply essential protein in human diets, and sustainable yields from wild harvests and aquaculture depend on growth rates.


Subject(s)
Fishes/growth & development , Models, Theoretical , Animals , Fishes/genetics
6.
Science ; 348(6238): 982, 2015 May 29.
Article in English | MEDLINE | ID: mdl-26023132

ABSTRACT

D'Emic and Myhrvold raise a number of statistical and methodological issues with our recent analysis of dinosaur growth and energetics. However, their critiques and suggested improvements lack biological and statistical justification.


Subject(s)
Body Temperature , Dinosaurs/growth & development , Dinosaurs/metabolism , Energy Metabolism , Animals
7.
Proc Natl Acad Sci U S A ; 112(8): 2617-22, 2015 Feb 24.
Article in English | MEDLINE | ID: mdl-25624499

ABSTRACT

Understanding the effects of individual organisms on material cycles and energy fluxes within ecosystems is central to predicting the impacts of human-caused changes on climate, land use, and biodiversity. Here we present a theory that integrates metabolic (organism-based bottom-up) and systems (ecosystem-based top-down) approaches to characterize how the metabolism of individuals affects the flows and stores of materials and energy in ecosystems. The theory predicts how the average residence time of carbon molecules, total system throughflow (TST), and amount of recycling vary with the body size and temperature of the organisms and with trophic organization. We evaluate the theory by comparing theoretical predictions with outputs of numerical models designed to simulate diverse ecosystem types and with empirical data for real ecosystems. Although residence times within different ecosystems vary by orders of magnitude-from weeks in warm pelagic oceans with minute phytoplankton producers to centuries in cold forests with large tree producers-as predicted, all ecosystems fall along a single line: residence time increases linearly with slope = 1.0 with the ratio of whole-ecosystem biomass to primary productivity (B/P). TST was affected predominantly by primary productivity and recycling by the transfer of energy from microbial decomposers to animal consumers. The theory provides a robust basis for estimating the flux and storage of energy, carbon, and other materials in terrestrial, marine, and freshwater ecosystems and for quantifying the roles of different kinds of organisms and environments at scales from local ecosystems to the biosphere.


Subject(s)
Ecosystem , Metabolism , Models, Biological , Carbon/metabolism , Carbon Cycle , Computer Simulation , Humans , Linear Models , Nitrogen/metabolism , Numerical Analysis, Computer-Assisted , Reproducibility of Results , Time Factors
8.
Science ; 344(6189): 1268-72, 2014 Jun 13.
Article in English | MEDLINE | ID: mdl-24926017

ABSTRACT

Were dinosaurs ectotherms or fast-metabolizing endotherms whose activities were unconstrained by temperature? To date, some of the strongest evidence for endothermy comes from the rapid growth rates derived from the analysis of fossil bones. However, these studies are constrained by a lack of comparative data and an appropriate energetic framework. Here we compile data on ontogenetic growth for extant and fossil vertebrates, including all major dinosaur clades. Using a metabolic scaling approach, we find that growth and metabolic rates follow theoretical predictions across clades, although some groups deviate. Moreover, when the effects of size and temperature are considered, dinosaur metabolic rates were intermediate to those of endotherms and ectotherms and closest to those of extant mesotherms. Our results suggest that the modern dichotomy of endothermic versus ectothermic is overly simplistic.


Subject(s)
Body Temperature , Dinosaurs/growth & development , Dinosaurs/metabolism , Energy Metabolism , Animals , Dinosaurs/classification , Fossils , Phylogeny
9.
Proc Biol Sci ; 281(1777): 20132818, 2014 Feb 22.
Article in English | MEDLINE | ID: mdl-24403339

ABSTRACT

In mammals, the mass-specific rate of biomass production during gestation and lactation, here called maternal productivity, has been shown to vary with body size and lifestyle. Metabolic theory predicts that post-weaning growth of offspring, here termed juvenile productivity, should be higher than maternal productivity, and juveniles of smaller species should be more productive than those of larger species. Furthermore because juveniles generally have similar lifestyles to their mothers, across species juvenile and maternal productivities should be correlated. We evaluated these predictions with data from 270 species of placental mammals in 14 taxonomic/lifestyle groups. All three predictions were supported. Lagomorphs, perissodactyls and artiodactyls were very productive both as juveniles and as mothers as expected from the abundance and reliability of their foods. Primates and bats were unproductive as juveniles and as mothers, as expected as an indirect consequence of their low predation risk and consequent low mortality. Our results point the way to a mechanistic explanation for the suite of correlated life-history traits that has been called the slow-fast continuum.


Subject(s)
Body Weight , Mammals/physiology , Models, Biological , Animals , Biological Evolution , Female , Mammals/growth & development , Species Specificity
10.
Ecology ; 93(9): 2052-60, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23094377

ABSTRACT

Globally, fire maintains many mesic habitats in an open canopy state by killing woody plants while reducing the size of those able to resprout. Where fire is frequent, tree saplings are often suppressed by a "fire trap" of repeated topkill (death of aerial biomoass) and resprouting, preventing them from reaching adult size. The ability to tolerate repeated topkill is an essential life-history trait that allows a sapling to persist until it experiences a long fire-free interval, during which it can escape the fire trap. We hypothesized that persistence in the fire trap results from a curvilinear relationship between pre-burn size and resprout size, which causes a plant to approach an equilibrial size in which post-fire biomass recovery is equal to fire-induced biomass loss. We also predicted that the equilibrial stem size is positively related to resource availability. To test these hypotheses, we collected data on pre-burn and resprout size of five woody plant species at wetland ecotones in longleaf pine savanna subjected to frequent burning. As expected, all species exhibited similar curvilinear relationships between pre-burn size and resprout size. The calculated equilibrial sizes were strong predictors of mean plant size across species and growing conditions, supporting the persistence equilibrium model. An alternative approach using matrix models yielded similar results. Resprouting was less vigorous in dry sites than at wet sites, resulting in smaller equilibrial stem sizes in drier sites; extrapolating these results provides an explanation for the absence of these species in xeric uplands. This new framework offers a straightforward approach to guide data collection for experimental, comparative, and modeling studies of plant persistence and community dynamics in frequently burned habitats.


Subject(s)
Fires , Plant Components, Aerial/growth & development , Plant Development/physiology , Plants/classification , Animals , North Carolina , Regeneration
SELECTION OF CITATIONS
SEARCH DETAIL
...