Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 55(22): 15110-15122, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34714642

ABSTRACT

Dissolved organic matter (DOM) has a dual role in indirect phototransformations of aquatic contaminants by acting both as a photosensitizer and an inhibitor. Herein, the pH dependence of the inhibitory effect of DOM and the underlying mechanisms were studied in more than 400 kinetic irradiation experiments over the pH range of 6-11. Experiments employed various combinations of one of three DOM isolates, one of two model photosensitizers, the model antioxidant phenol, and one of nine target compounds (TCs), comprising several aromatic amines, in particular anilines and sulfonamides, and 4-cyanophenol. Using model photosensitizers without antioxidants, the phototransformation of most TCs increased with increasing pH, even for TCs for which pH did not affect speciation. This trend was attributed to pH-dependent formation yields of TC-derived radicals and their re-formation to the parent TC. Analogous trends were observed with DOM as a photosensitizer. Comparison of model and DOM photosensitizer data sets showed increasing inhibitory effects of DOM on TC phototransformation kinetics with increasing pH. In systems with anilines as a TC and phenol as a model antioxidant, pH trends of the inhibitory effect could be rationalized based on the reduction potential difference (ΔEred) of phenoxyl/phenol and anilinyl/aniline couples. Our results indicate that the light-induced transformation of aromatic amines in the aquatic environment is governed by the pH-dependent inhibitory effects of antioxidant phenolic moieties of DOM and pH-dependent processes related to the formation of amine oxidation intermediates.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Hydrogen-Ion Concentration , Kinetics , Oxidation-Reduction , Photolysis , Water Pollutants, Chemical/analysis
2.
Mol Cell Endocrinol ; 362(1-2): 29-38, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22659651

ABSTRACT

As a key regulator of the neuroendocrine stress axis and as a neuromodulator in the brain, the neuropeptide corticotropin-releasing hormone (CRH) plays an important role in various diseases of the central nervous system. Its cognate receptor CRH receptor type 1 (CRHR1) is a potential novel target for the therapeutic intervention in major depressive disorder. Therefore, a more precise understanding of involved intracellular signaling mechanisms is essential. The objective of this project was to identify specific target genes of CRHR1-mediated signaling pathways in the corticotrope cell line AtT-20 and in the neuronal cell line HN9 using microarray technology and qRT-PCR, respectively. In addition, we assessed the capacity of validated target genes to directly impact on CRHR1-dependent signaling using reporter assays. Thereby, we identified a set of CRHR1 downstream targets with diverging and cell type-specific roles which strengthen the role of CRH and CRHR1 as dynamic modulators of a variety of signal transduction mechanisms and cellular processes.


Subject(s)
Corticotrophs/metabolism , Corticotropin-Releasing Hormone/physiology , Gene Expression Regulation , Neurons/metabolism , Receptors, Corticotropin-Releasing Hormone/metabolism , Animals , Cell Line, Tumor , Genes, Reporter , Luciferases, Firefly/biosynthesis , Luciferases, Firefly/genetics , Mice , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Response Elements , Transcription, Genetic , Transcriptional Activation , Transcriptome
3.
Environ Sci Technol ; 46(9): 4916-25, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22463073

ABSTRACT

Humic substances (HS) are heterogeneous, redox-active organic macromolecules. While electron transfer to and from HS under reducing conditions is well investigated, comparatively little is known on the electron donating (i.e., antioxidant) properties of HS under oxic conditions. In this work, the electron donating capacities (EDCs) of terrestrial and aquatic HS were quantified by mediated electrochemical oxidation over a wide range of pH values and applied redox potentials (E(h)) using 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) as an electron transfer mediator. Electrochemical oxidation of three model humic acids (HAs) was largely irreversible, and the EDCs of these HAs increased with increasing E(h) and pH. These results suggest that HS contain a wide variety of moieties that are oxidized at different potentials and that, upon oxidation, release protons and undergo irreversible follow-up reactions. At a given pH and E(h), the EDCs of the HS correlated well with their titrated phenol contents suggesting phenolic moieties as major electron donating groups in HS. Comparing the EDCs of 15 HS with their electron accepting capacities (EACs), aquatic HS had higher EDCs and lower EACs than terrestrial HS of comparable aromaticities. These results indicate that oxidative transformation of HS in the environment results in a depletion of electron donating phenolic moieties with antioxidant properties relative to the electron accepting quinone moieties.


Subject(s)
Antioxidants/analysis , Humic Substances/analysis , Benzothiazoles , Hydrogen-Ion Concentration , Oxidation-Reduction , Sulfonic Acids
4.
PLoS One ; 6(8): e23604, 2011.
Article in English | MEDLINE | ID: mdl-21897848

ABSTRACT

Behavioral endophenotypes are determined by a multitude of counteracting but precisely balanced molecular and physiological mechanisms. In this study, we aim to identify potential novel molecular targets that contribute to the multigenic trait "anxiety". We used microarrays to investigate the gene expression profiles of different brain regions within the limbic system of mice which were selectively bred for either high (HAB) or low (LAB) anxiety-related behavior, and also show signs of comorbid depression-like behavior. We identified and confirmed sex-independent differences in the basal expression of 13 candidate genes, using tissue from the entire brain, including coronin 7 (Coro7), cathepsin B (Ctsb), muscleblind-like 1 (Mbnl1), metallothionein 1 (Mt1), solute carrier family 25 member 17 (Slc25a17), tribbles homolog 2 (Trib2), zinc finger protein 672 (Zfp672), syntaxin 3 (Stx3), ATP-binding cassette, sub-family A member 2 (Abca2), ectonucleotide pyrophosphatase/phosphodiesterase 5 (Enpp5), high mobility group nucleosomal binding domain 3 (Hmgn3) and pyruvate dehydrogenase beta (Pdhb). Additionally, we confirmed brain region-specific differences in the expression of synaptotagmin 4 (Syt4).Our identification of about 90 polymorphisms in Ctsb suggested that this gene might play a critical role in shaping our mouse model's behavioral endophenotypes. Indeed, the assessment of anxiety-related and depression-like behaviors of Ctsb knock-out mice revealed an increase in depression-like behavior in females. Altogether, our results suggest that Ctsb has significant effects on emotionality, irrespective of the tested mouse strain, making it a promising target for future pharmacotherapy.


Subject(s)
Anxiety/enzymology , Anxiety/genetics , Cathepsin B/genetics , Gene Expression Profiling , Animals , Behavior, Animal , Brain/metabolism , Cathepsin B/deficiency , Endophenotypes , Female , Gene Knockout Techniques , In Situ Hybridization , Male , Mice , Oligonucleotide Array Sequence Analysis , Polymerase Chain Reaction , Sequence Analysis, DNA
5.
BMC Syst Biol ; 4: 159, 2010 Nov 19.
Article in English | MEDLINE | ID: mdl-21092110

ABSTRACT

BACKGROUND: Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is a hallmark of complex and multifactorial psychiatric diseases such as anxiety and mood disorders. About 50-60% of patients with major depression show HPA axis dysfunction, i.e. hyperactivity and impaired negative feedback regulation. The neuropeptide corticotropin-releasing hormone (CRH) and its receptor type 1 (CRHR1) are key regulators of this neuroendocrine stress axis. Therefore, we analyzed CRH/CRHR1-dependent gene expression data obtained from the pituitary corticotrope cell line AtT-20, a well-established in vitro model for CRHR1-mediated signal transduction. To extract significantly regulated genes from a genome-wide microarray data set and to deduce underlying CRHR1-dependent signaling networks, we combined supervised and unsupervised algorithms. RESULTS: We present an efficient variable selection strategy by consecutively applying univariate as well as multivariate methods followed by graphical models. First, feature preselection was used to exclude genes not differentially regulated over time from the dataset. For multivariate variable selection a maximum likelihood (MLHD) discriminant function within GALGO, an R package based on a genetic algorithm (GA), was chosen. The topmost genes representing major nodes in the expression network were ranked to find highly separating candidate genes. By using groups of five genes (chromosome size) in the discriminant function and repeating the genetic algorithm separately four times we found eleven genes occurring at least in three of the top ranked result lists of the four repetitions. In addition, we compared the results of GA/MLHD with the alternative optimization algorithms greedy selection and simulated annealing as well as with the state-of-the-art method random forest. In every case we obtained a clear overlap of the selected genes independently confirming the results of MLHD in combination with a genetic algorithm. With two unsupervised algorithms, principal component analysis and graphical Gaussian models, putative interactions of the candidate genes were determined and reconstructed by literature mining. Differential regulation of six candidate genes was validated by qRT-PCR. CONCLUSIONS: The combination of supervised and unsupervised algorithms in this study allowed extracting a small subset of meaningful candidate genes from the genome-wide expression data set. Thereby, variable selection using different optimization algorithms based on linear classifiers as well as the nonlinear random forest method resulted in congruent candidate genes. The calculated interacting network connecting these new target genes was bioinformatically mapped to known CRHR1-dependent signaling pathways. Additionally, the differential expression of the identified target genes was confirmed experimentally.


Subject(s)
Algorithms , Computational Biology/methods , Gene Expression Profiling , Models, Biological , Receptors, Corticotropin-Releasing Hormone/metabolism , Signal Transduction , Analysis of Variance , Animals , Cell Line , Data Mining , Gene Regulatory Networks , Humans , Likelihood Functions , Linear Models , Normal Distribution , Principal Component Analysis , Rats , Reproducibility of Results
6.
PLoS One ; 4(4): e5129, 2009.
Article in English | MEDLINE | ID: mdl-19357765

ABSTRACT

BACKGROUND: To investigate neurobiological correlates of trait anxiety, CD1 mice were selectively bred for extremes in anxiety-related behavior, with high (HAB) and low (LAB) anxiety-related behavior mice additionally differing in behavioral tests reflecting depression-like behavior. METHODOLOGY/ PRINCIPAL FINDINGS: In this study, microarray analysis, in situ hybridization, quantitative real-time PCR and immunohistochemistry revealed decreased expression of the vasopressin gene (Avp) in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei of adult LAB mice compared to HAB, NAB (normal anxiety-related behavior) and HABxLAB F1 intercross controls, without detecting differences in receptor expression or density. By sequencing the regions 2.5 kbp up- and downstream of the Avp gene locus, we could identify several polymorphic loci, differing between the HAB and LAB lines. In the gene promoter, a deletion of twelve bp Delta(-2180-2191) is particularly likely to contribute to the reduced Avp expression detected in LAB animals under basal conditions. Indeed, allele-specific transcription analysis of F1 animals revealed a hypomorphic LAB-specific Avp allele with a reduced transcription rate by 75% compared to the HAB-specific allele, thus explaining line-specific Avp expression profiles and phenotypic features. Accordingly, intra-PVN Avp mRNA levels were found to correlate with anxiety-related and depression-like behaviors. In addition to this correlative evidence, a significant, though moderate, genotype/phenotype association was demonstrated in 258 male mice of a freely-segregating F2 panel, suggesting a causal contribution of the Avp promoter deletion to anxiety-related behavior. DISCUSSION: Thus, the identification of polymorphisms in the Avp gene promoter explains gene expression differences in association with the observed phenotype, thus further strengthening the concept of the critical involvement of centrally released AVP in trait anxiety.


Subject(s)
Alleles , Anxiety/genetics , Arginine Vasopressin/genetics , Behavior, Animal/physiology , Animals , Anxiety/physiopathology , Arginine Vasopressin/metabolism , Depression/genetics , Depression/physiopathology , Female , Gene Expression Profiling , Humans , Male , Mice , Motor Activity/physiology , Neuropsychological Tests , Oligonucleotide Array Sequence Analysis , Oxytocin/genetics , Oxytocin/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Supraoptic Nucleus/metabolism
7.
Nucleic Acids Res ; 35(2): e10, 2007.
Article in English | MEDLINE | ID: mdl-17158154

ABSTRACT

RNA interference (RNAi) can be induced in vitro either by application of synthetic short interfering RNAs (siRNAs), or by intracellular expression of siRNAs or short hairpin RNAs (shRNAs) from transfected vectors. The most widely used promoters for siRNA/shRNA expression are based on polymerase III (Pol III)-dependent transcription. We developed an alternative vector for siRNA/shRNA expression, using a mouse RNA polymerase I (Pol I) promoter. Pol I-dependent transcription serves in cells for production of ribosomal RNA (rRNA), and as such, is ubiquitously and stably active in different cell types. As Pol I-dependent transcription is highly species-specific, Pol I-based system provides an important biosafety advantage with respect to silencing of genes with unknown functions.


Subject(s)
Genetic Vectors , RNA Interference , RNA Polymerase I/metabolism , RNA, Small Interfering/metabolism , Animals , Cell Line , Genetic Vectors/chemistry , Humans , Mice , Promoter Regions, Genetic , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Species Specificity , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...