Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 5293, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38906896

ABSTRACT

Lacustrine methane emissions are strongly mitigated by aerobic methane-oxidizing bacteria (MOB) that are typically most active at the oxic-anoxic interface. Although oxygen is required by the MOB for the first step of methane oxidation, their occurrence in anoxic lake waters has raised the possibility that they are capable of oxidizing methane further anaerobically. Here, we investigate the activity and growth of MOB in Lake Zug, a permanently stratified freshwater lake. The rates of anaerobic methane oxidation in the anoxic hypolimnion reached up to 0.2 µM d-1. Single-cell nanoSIMS measurements, together with metagenomic and metatranscriptomic analyses, linked the measured rates to MOB of the order Methylococcales. Interestingly, their methane assimilation activity was similar under hypoxic and anoxic conditions. Our data suggest that these MOB use fermentation-based methanotrophy as well as denitrification under anoxic conditions, thus offering an explanation for their widespread presence in anoxic habitats such as stratified water columns. Thus, the methane sink capacity of anoxic basins may have been underestimated by not accounting for the anaerobic MOB activity.


Subject(s)
Lakes , Methane , Oxidation-Reduction , Methane/metabolism , Lakes/microbiology , Anaerobiosis , Methylococcaceae/metabolism , Methylococcaceae/genetics , Metagenomics , Oxygen/metabolism
2.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article in English | MEDLINE | ID: mdl-35165204

ABSTRACT

Marine coastlines colonized by seagrasses are a net source of methane to the atmosphere. However, methane emissions from these environments are still poorly constrained, and the underlying processes and responsible microorganisms remain largely unknown. Here, we investigated methane turnover in seagrass meadows of Posidonia oceanica in the Mediterranean Sea. The underlying sediments exhibited median net fluxes of methane into the water column of ca. 106 µmol CH4 ⋅ m-2 ⋅ d-1 Our data show that this methane production was sustained by methylated compounds produced by the plant, rather than by fermentation of buried organic carbon. Interestingly, methane production was maintained long after the living plant died off, likely due to the persistence of methylated compounds, such as choline, betaines, and dimethylsulfoniopropionate, in detached plant leaves and rhizomes. We recovered multiple mcrA gene sequences, encoding for methyl-coenzyme M reductase (Mcr), the key methanogenic enzyme, from the seagrass sediments. Most retrieved mcrA gene sequences were affiliated with a clade of divergent Mcr and belonged to the uncultured Candidatus Helarchaeota of the Asgard superphylum, suggesting a possible involvement of these divergent Mcr in methane metabolism. Taken together, our findings identify the mechanisms controlling methane emissions from these important blue carbon ecosystems.


Subject(s)
Alismatales/metabolism , Euryarchaeota/metabolism , Methane/metabolism , Aerobiosis , Anaerobiosis , Euryarchaeota/classification , Geologic Sediments , Mediterranean Sea , Microbiota , Oxidation-Reduction , Phylogeny , Species Specificity
3.
Nature ; 600(7887): 105-109, 2021 12.
Article in English | MEDLINE | ID: mdl-34732889

ABSTRACT

Symbiotic N2-fixing microorganisms have a crucial role in the assimilation of nitrogen by eukaryotes in nitrogen-limited environments1-3. Particularly among land plants, N2-fixing symbionts occur in a variety of distantly related plant lineages and often involve an intimate association between host and symbiont2,4. Descriptions of such intimate symbioses are lacking for seagrasses, which evolved around 100 million years ago from terrestrial flowering plants that migrated back to the sea5. Here we describe an N2-fixing symbiont, 'Candidatus Celerinatantimonas neptuna', that lives inside seagrass root tissue, where it provides ammonia and amino acids to its host in exchange for sugars. As such, this symbiosis is reminiscent of terrestrial N2-fixing plant symbioses. The symbiosis between Ca. C. neptuna and its host Posidonia oceanica enables highly productive seagrass meadows to thrive in the nitrogen-limited Mediterranean Sea. Relatives of Ca. C. neptuna occur worldwide in coastal ecosystems, in which they may form similar symbioses with other seagrasses and saltmarsh plants. Just like N2-fixing microorganisms might have aided the colonization of nitrogen-poor soils by early land plants6, the ancestors of Ca. C. neptuna and its relatives probably enabled flowering plants to invade nitrogen-poor marine habitats, where they formed extremely efficient blue carbon ecosystems7.


Subject(s)
Alismatales/microbiology , Aquatic Organisms/metabolism , Bacteria/metabolism , Nitrogen Fixation , Nitrogen/metabolism , Symbiosis , Alismatales/metabolism , Amino Acids/metabolism , Ammonia/metabolism , Aquatic Organisms/microbiology , Ecosystem , Endophytes/metabolism , Mediterranean Sea , Plant Leaves/metabolism , Plant Roots/metabolism , Plant Roots/microbiology
4.
Nature ; 591(7850): 445-450, 2021 03.
Article in English | MEDLINE | ID: mdl-33658719

ABSTRACT

Mitochondria are specialized eukaryotic organelles that have a dedicated function in oxygen respiration and energy production. They evolved about 2 billion years ago from a free-living bacterial ancestor (probably an alphaproteobacterium), in a process known as endosymbiosis1,2. Many unicellular eukaryotes have since adapted to life in anoxic habitats and their mitochondria have undergone further reductive evolution3. As a result, obligate anaerobic eukaryotes with mitochondrial remnants derive their energy mostly from fermentation4. Here we describe 'Candidatus Azoamicus ciliaticola', which is an obligate endosymbiont of an anaerobic ciliate and has a dedicated role in respiration and providing energy for its eukaryotic host. 'Candidatus A. ciliaticola' contains a highly reduced 0.29-Mb genome that encodes core genes for central information processing, the electron transport chain, a truncated tricarboxylic acid cycle, ATP generation and iron-sulfur cluster biosynthesis. The genome encodes a respiratory denitrification pathway instead of aerobic terminal oxidases, which enables its host to breathe nitrate instead of oxygen. 'Candidatus A. ciliaticola' and its ciliate host represent an example of a symbiosis that is based on the transfer of energy in the form of ATP, rather than nutrition. This discovery raises the possibility that eukaryotes with mitochondrial remnants may secondarily acquire energy-providing endosymbionts to complement or replace functions of their mitochondria.


Subject(s)
Anaerobiosis , Bacteria/metabolism , Ciliophora/metabolism , Denitrification , Energy Metabolism , Host Microbial Interactions , Symbiosis , Adenosine Triphosphate/metabolism , Bacteria/genetics , Biological Evolution , Cell Respiration , Ciliophora/chemistry , Ciliophora/cytology , Citric Acid Cycle/genetics , Electron Transport/genetics , Genome, Bacterial/genetics , Host Microbial Interactions/genetics , Mitochondria , Nitrates/metabolism , Oxygen/metabolism , Phylogeny
5.
Appl Environ Microbiol ; 85(24)2019 12 15.
Article in English | MEDLINE | ID: mdl-31585991

ABSTRACT

Members of the epsilonproteobacterial genus Arcobacter have been identified to be potentially important sulfide oxidizers in marine coastal, seep, and stratified basin environments. In the highly productive upwelling waters off the coast of Peru, Arcobacter cells comprised 3 to 25% of the total microbial community at a near-shore station where sulfide concentrations exceeded 20 µM in bottom waters. From the chemocline where the Arcobacter population exceeded 106 cells ml-1 and where high rates of denitrification (up to 6.5 ± 0.4 µM N day-1) and dark carbon fixation (2.8 ± 0.2 µM C day-1) were measured, we isolated a previously uncultivated Arcobacter species, Arcobacter peruensis sp. nov. (BCCM LMG-31510). Genomic analysis showed that A. peruensis possesses genes encoding sulfide oxidation and denitrification pathways but lacks the ability to fix CO2 via autotrophic carbon fixation pathways. Genes encoding transporters for organic carbon compounds, however, were present in the A. peruensis genome. Physiological experiments demonstrated that A. peruensis grew best on a mix of sulfide, nitrate, and acetate. Isotope labeling experiments further verified that A. peruensis completely reduced nitrate to N2 and assimilated acetate but did not fix CO2, thus coupling heterotrophic growth to sulfide oxidation and denitrification. Single-cell nanoscale secondary ion mass spectrometry analysis of samples taken from shipboard isotope labeling experiments also confirmed that the Arcobacter population in situ did not substantially fix CO2 The efficient growth yield associated with the chemolithoheterotrophic metabolism of A. peruensis may allow this Arcobacter species to rapidly bloom in eutrophic and sulfide-rich waters off the coast of Peru.IMPORTANCE Our multidisciplinary approach provides new insights into the ecophysiology of a newly isolated environmental Arcobacter species, as well as the physiological flexibility within the Arcobacter genus and sulfide-oxidizing, denitrifying microbial communities within oceanic oxygen minimum zones (OMZs). The chemolithoheterotrophic species Arcobacter peruensis may play a substantial role in the diverse consortium of bacteria that is capable of coupling denitrification and fixed nitrogen loss to sulfide oxidation in eutrophic, sulfidic coastal waters. With increasing anthropogenic pressures on coastal regions, e.g., eutrophication and deoxygenation (D. Breitburg, L. A. Levin, A. Oschlies, M. Grégoire, et al., Science 359:eaam7240, 2018, https://doi.org/10.1126/science.aam7240), niches where sulfide-oxidizing, denitrifying heterotrophs such as A. peruensis thrive are likely to expand.


Subject(s)
Arcobacter/isolation & purification , Arcobacter/metabolism , Geologic Sediments/microbiology , Heterotrophic Processes/physiology , Seawater/microbiology , Sulfides/metabolism , Arcobacter/genetics , Arcobacter/growth & development , Biomass , Carbon/metabolism , Carbon Cycle , Denitrification , Isotope Labeling , Nitrates/metabolism , Nitrogen Fixation , Oxidation-Reduction , Oxygen/metabolism , Peru , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/isolation & purification , Water/chemistry , Water Microbiology , Whole Genome Sequencing
6.
Environ Microbiol ; 20(12): 4486-4502, 2018 12.
Article in English | MEDLINE | ID: mdl-30117262

ABSTRACT

Coastal oceans receive large amounts of anthropogenic fixed nitrogen (N), most of which is denitrified in the sediment before reaching the open ocean. Sandy sediments, which are common in coastal regions, seem to play an important role in catalysing this N-loss. Permeable sediments are characterized by advective porewater transport, which supplies high fluxes of organic matter into the sediment, but also leads to fluctuations in oxygen and nitrate concentrations. Little is known about how the denitrifying communities in these sediments are adapted to such fluctuations. Our combined results indicate that denitrification in eutrophied sandy sediments from the world's largest tidal flat system, the Wadden Sea, is carried out by different groups of microorganisms. This segregation leads to the formation of N2 O which is advectively transported to the overlying waters and thereby emitted to the atmosphere. At the same time, the production of N2 O within the sediment supports a subset of Flavobacteriia which appear to be specialized on N2 O reduction. If the mechanisms shown here are active in other coastal zones, then denitrification in eutrophied sandy sediments may substantially contribute to current marine N2 O emissions.


Subject(s)
Denitrification , Geologic Sediments/microbiology , Nitrous Oxide/metabolism , Soil Microbiology , Atmosphere , Geologic Sediments/chemistry , Nitrates/metabolism , Nitrogen Fixation , Oceans and Seas
7.
Environ Microbiol ; 20(7): 2598-2614, 2018 07.
Article in English | MEDLINE | ID: mdl-29806730

ABSTRACT

Methanotrophic bacteria represent an important biological filter regulating methane emissions into the atmosphere. Planktonic methanotrophic communities in freshwater lakes are typically dominated by aerobic gamma-proteobacteria, with a contribution from alpha-proteobacterial methanotrophs and the NC10 bacteria. The NC10 clade encompasses methanotrophs related to 'Candidatus Methylomirabilis oxyfera', which oxidize methane using a unique pathway of denitrification that tentatively produces N2 and O2 from nitric oxide (NO). Here, we describe a new species of the NC10 clade, 'Ca. Methylomirabilis limnetica', which dominated the planktonic microbial community in the anoxic depths of the deep stratified Lake Zug in two consecutive years, comprising up to 27% of the total bacterial population. Gene transcripts assigned to 'Ca. M. limnetica' constituted up to one third of all metatranscriptomic sequences in situ. The reconstructed genome encoded a complete pathway for methane oxidation, and an incomplete denitrification pathway, including two putative nitric oxide dismutase genes. The genome of 'Ca. M. limnetica' exhibited features possibly related to genome streamlining (i.e. less redundancy of key metabolic genes) and adaptation to its planktonic habitat (i.e. gas vesicle genes). We speculate that 'Ca. M. limnetica' temporarily bloomed in the lake during non-steady-state conditions suggesting a niche for NC10 bacteria in the lacustrine methane and nitrogen cycle.


Subject(s)
Bacteria, Anaerobic/isolation & purification , Denitrification , Lakes/microbiology , Methane/metabolism , Bacteria, Anaerobic/classification , Bacteria, Anaerobic/genetics , Bacteria, Anaerobic/metabolism , Genome, Bacterial , Microbiota , Nitric Oxide/metabolism , Nitrogen Cycle , Oxidation-Reduction , Water Microbiology
8.
ISME J ; 11(9): 2124-2140, 2017 09.
Article in English | MEDLINE | ID: mdl-28585934

ABSTRACT

Methane-oxidizing bacteria represent a major biological sink for methane and are thus Earth's natural protection against this potent greenhouse gas. Here we show that in two stratified freshwater lakes a substantial part of upward-diffusing methane was oxidized by filamentous gamma-proteobacteria related to Crenothrix polyspora. These filamentous bacteria have been known as contaminants of drinking water supplies since 1870, but their role in the environmental methane removal has remained unclear. While oxidizing methane, these organisms were assigned an 'unusual' methane monooxygenase (MMO), which was only distantly related to 'classical' MMO of gamma-proteobacterial methanotrophs. We now correct this assignment and show that Crenothrix encode a typical gamma-proteobacterial PmoA. Stable isotope labeling in combination swith single-cell imaging mass spectrometry revealed methane-dependent growth of the lacustrine Crenothrix with oxygen as well as under oxygen-deficient conditions. Crenothrix genomes encoded pathways for the respiration of oxygen as well as for the reduction of nitrate to N2O. The observed abundance and planktonic growth of Crenothrix suggest that these methanotrophs can act as a relevant biological sink for methane in stratified lakes and should be considered in the context of environmental removal of methane.


Subject(s)
Gammaproteobacteria/metabolism , Lakes/microbiology , Methane/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gammaproteobacteria/classification , Gammaproteobacteria/genetics , Gammaproteobacteria/isolation & purification , Lakes/chemistry , Methane/analysis , Oxidation-Reduction , Oxygenases/genetics , Oxygenases/metabolism
9.
ISME J ; 11(8): 1799-1812, 2017 08.
Article in English | MEDLINE | ID: mdl-28463234

ABSTRACT

Nitrogen (N) input to the coastal oceans has increased considerably because of anthropogenic activities, however, concurrent increases have not occurred in open oceans. It has been suggested that benthic denitrification in sandy coastal sediments is a sink for this N. Sandy sediments are dynamic permeable environments, where electron acceptor and donor concentrations fluctuate over short temporal and spatial scales. The response of denitrifiers to these fluctuations are largely unknown, although previous observations suggest they may denitrify under aerobic conditions. We examined the response of benthic denitrification to fluctuating oxygen concentrations, finding that denitrification not only occurred at high O2 concentrations but was stimulated by frequent switches between oxic and anoxic conditions. Throughout a tidal cycle, in situtranscription of genes for aerobic respiration and denitrification were positively correlated within diverse bacterial classes, regardless of O2 concentrations, indicating that denitrification gene transcription is not strongly regulated by O2 in sandy sediments. This allows microbes to respond rapidly to changing environmental conditions, but also means that denitrification is utilized as an auxiliary respiration under aerobic conditions when imbalances occur in electron donor and acceptor supply. Aerobic denitrification therefore contributes significantly to N-loss in permeable sediments making the process an important sink for anthropogenic N-inputs.


Subject(s)
Bacteria/classification , Denitrification , Geologic Sediments/microbiology , Oxygen Consumption/physiology , Aerobiosis , Anaerobiosis , Nitrogen/analysis , Oceans and Seas
10.
Chembiochem ; 13(6): 818-28, 2012 Apr 16.
Article in English | MEDLINE | ID: mdl-22438305

ABSTRACT

This paper presents a divide-and-conquer approach towards obtaining solution structures of G protein-coupled receptors. The human Y4 receptor was dissected into two to three transmembrane helix fragments, which were individually studied by solution NMR. We systematically compared various biosynthetic routes for the expression of the fragments in Escherichia coli and discuss purification strategies. In particular, we have compared the production of transmembrane (TM) fragments as inclusion bodies by using the ΔTrp leader sequence, with membrane-directed expression by using Mistic as the fusion partner, and developed methods for enzymatic cleavage. In addition, direct expression of two-TM fragments into inclusion bodies is a successful route in some cases. With the exception of TM13, we could produce all fragments in isotope-labeled form in quantities sufficient for NMR studies. Almost complete backbone resonance assignment was obtained for the first two helices, as well as for helices 5 and 7, and a high degree was obtained for TM6, while conformational exchange processes resulted in the disappearance of many signals from TM4. In addition, complete assignments were obtained for all residues of the N-terminal domain, as well as the extracellular and cytosolic loops (with the exception of an undecapeptide segment in the second extracellular loop, EC2) and for the complete cytosolic C-terminal tail. In total, backbone resonances of 78 % of all residues were assigned for the Y4 receptor. Predictions of secondary structure based on backbone chemical shifts indicate that most residues from the TM regions adopt helical conformations, with exception of those around polar residues or prolines. However, the domain boundaries differ slightly from those predicted for homology models. We suggest that the obtained chemical shifts might be useful in assigning the full-length receptor.


Subject(s)
Receptors, Neuropeptide Y/biosynthesis , Receptors, Neuropeptide Y/chemistry , Amino Acid Sequence , Humans , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular/methods , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Structure, Secondary , Receptors, Neuropeptide Y/metabolism
11.
J Clin Rheumatol ; 9(5): 310-5, 2003 Oct.
Article in English | MEDLINE | ID: mdl-17041481

ABSTRACT

The cutaneous manifestations of autoimmune diseases, including systemic lupus erythematosus, are common and often recalcitrant to treatment. Unfortunately, therapy for lupus and other autoimmune skin diseases has not advanced and relies heavily on the use of oral and topical corticosteroids. Frequently, treatments prove less than ideal, either from toxicity or lack of efficacy. A topical form of the immunomodulating transplant medication, tacrolimus (FK-506, Protopic), has recently been developed and approved for use in treating atopic dermatitis. Its mechanism of action and local route of administration render tacrolimus a potentially attractive novel therapeutic alternative for the treatment of various autoimmune dermatologic conditions. We report our successful experience using this drug in 3 patients with autoimmune dermatologic disease who were referred to a tertiary care subspecialty clinic.

SELECTION OF CITATIONS
SEARCH DETAIL
...