Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 12(7): e9048, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35813904

ABSTRACT

The forage maturation hypothesis (FMH) assumes that herbivores cope with the trade-off between digestibility and biomass in forage by selecting vegetation at intermediate growth. The green wave hypothesis (GWH) extends the FMH to suggest how spatiotemporal heterogeneity in plant quality shapes migratory movements of herbivores. Growing empirical support for these hypotheses mainly comes from studies in vast landscapes with large-scale habitat heterogeneity. It is unclear, however, to what extent ungulates surf green waves in human-altered landscapes with small-scale heterogeneity in terms of land use and topography. We used plant phenological proxies derived from Sentinel 2 satellite data to analyze the habitat selection of 93 collared red deer (Cervus elaphus) in montane and alpine habitats. Using a step selection analysis, we investigated how plant phenology, that is, the instantaneous rate of green-up (IRG) and normalized difference vegetation index (NDVI), and a set of variables describing topography and human presence influenced red deer resource selection in open habitats. We learned that red deer selected areas with high biomass at green-up and avoided habitats with possible exposure to human activity. Additionally, landscape structure and topography strongly influenced spatial behavior of red deer. We further compared cumulative access to high-quality forage across migrant strategies and found migrants gained better access than residents. Many migratory individuals surfed the green wave, and their surfing behavior, however, became less pronounced with decreasing distance to settlements. Within the constraints of topography and human land use, red deer track spring green-up on a fine spatiotemporal scale and follow the green wave across landscapes in migration movements. Thus, they benefit from high-quality forage even in human-dominated landscapes with small-scale heterogeneity and vegetation emerging in a heterogenic, dynamic mosaic.

2.
Trends Ecol Evol ; 33(10): 790-802, 2018 10.
Article in English | MEDLINE | ID: mdl-30166069

ABSTRACT

Predictive models are central to many scientific disciplines and vital for informing management in a rapidly changing world. However, limited understanding of the accuracy and precision of models transferred to novel conditions (their 'transferability') undermines confidence in their predictions. Here, 50 experts identified priority knowledge gaps which, if filled, will most improve model transfers. These are summarized into six technical and six fundamental challenges, which underlie the combined need to intensify research on the determinants of ecological predictability, including species traits and data quality, and develop best practices for transferring models. Of high importance is the identification of a widely applicable set of transferability metrics, with appropriate tools to quantify the sources and impacts of prediction uncertainty under novel conditions.


Subject(s)
Ecology/methods , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...