Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Front Oncol ; 12: 869078, 2022.
Article in English | MEDLINE | ID: mdl-35692755

ABSTRACT

Imprime PGG (Imprime) is in late-stage clinical development as a combinatorial agent with several therapeutic modalities. Here we present pre-clinical mechanistic data supportive of Imprime, a soluble yeast ß-1,3/1,6-glucan pathogen-associated molecular pattern able to prime innate immune cells in a Dectin-1dependent manner. In tumor-free mice, Imprime evoked broad innate immune responses (type I interferon signature, mobilization of myeloid cells, dendritic cell and monocyte/macrophage expression of co-stimulatory ligands like CD86, and activation of natural killer cells). Imprime-mediated activation of myeloid cells also resulted in functional priming of antigen-specific CD8 T cell response. In tumor-bearing mice, Imprime monotherapy further resulted in activation of systemic and tumor infiltrating macrophages and enhanced cytotoxic CD8 T cell trafficking. Imprime enhanced the anti-tumor activity of several combinatorial agents in mouse cancer models; anti-tyrosinase-related protein 1 antibody in B16F10 melanoma experimental lung metastasis model, anti-vascular endothelial growth factor receptor 2 antibody in H1299 and H441 lung cancer, and anti-programmed cell death protein 1 antibody in MC38 colon cancer models. Mechanistically, combining Imprime with these combinatorial therapeutic agents elicited enhanced innate immune activation, supporting immunological synergy. Finally, Imprime treatment induced similar in vitro phenotypic and functional activation of human innate immune cells. Collectively, these data demonstrate Imprime's potential to orchestrate a broad, yet coordinated, anti-cancer immune response and complement existing cancer immunotherapies.

2.
J Immunol ; 202(10): 2945-2956, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30988115

ABSTRACT

Imprime PGG (Imprime) is an i.v. administered, yeast ß-1,3/1,6 glucan in clinical development with checkpoint inhibitors. Imprime-mediated innate immune activation requires immune complex formation with naturally occurring IgG anti-ß glucan Abs (ABA). We administered Imprime to healthy human volunteers to assess the necessity of ABA for Imprime-mediated immunopharmacodynamic (IPD) changes. Imprime (4 mg/kg) was administered i.v. in single and multiple infusions. Subsets of subjects were premedicated with antihistamine and corticosteroid. Peripheral blood was measured before, during and after Imprime administration for IPD changes (e.g., ABA, circulating immune complexes, complement activation, complete blood counts, cytokine/chemokine, and gene expression changes). IPD changes were analyzed based on pretreatment serum ABA levels: low-ABA (<20 µg/ml), mid-ABA (≥20-50 µg/ml), and high-ABA (≥50 µg/ml). At the end of infusion, free serum ABA levels decreased, circulating immune complex levels increased, and complement activation was observed. At ∼1-4 h after end of infusion, increased expression of cytokines/chemokines, a 1.5-4-fold increase in neutrophil and monocyte counts and a broad activation of innate immune genes were observed. Low-ABA subjects typically showed minimal IPD changes except when ABA levels rose above 20 µg/ml after repeated Imprime dosing. Mild-to-moderate infusion-related reactions occurred in subjects with ABA ≥20 µg/ml. Premedications alleviated some of the infusion-related reactions, but also inhibited cytokine responses. In conclusion, ABA levels, being critical for Imprime-mediated immune activation may provide a plausible, mechanism-based biomarker to identify patients most likely to respond to Imprime-based anticancer immunotherapy.


Subject(s)
Adjuvants, Immunologic , Fungal Polysaccharides , Immunotherapy , Neoplasms , Saccharomyces cerevisiae/chemistry , beta-Glucans , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/pharmacokinetics , Antibodies, Fungal/blood , Antibodies, Fungal/immunology , Chemokines/blood , Chemokines/immunology , Female , Fungal Polysaccharides/administration & dosage , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/pharmacokinetics , Humans , Male , Neoplasms/blood , Neoplasms/immunology , Neoplasms/therapy , beta-Glucans/administration & dosage , beta-Glucans/chemistry , beta-Glucans/pharmacokinetics
3.
PLoS One ; 11(11): e0165909, 2016.
Article in English | MEDLINE | ID: mdl-27812183

ABSTRACT

Imprime PGG (Imprime), an intravenously-administered, soluble ß-glucan, has shown compelling efficacy in multiple phase 2 clinical trials with tumor targeting or anti-angiogenic antibodies. Mechanistically, Imprime acts as pathogen-associated molecular pattern (PAMP) directly activating innate immune effector cells, triggering a coordinated anti-cancer immune response. Herein, using whole blood from healthy human subjects, we show that Imprime-induced anti-cancer functionality is dependent on immune complex formation with naturally-occurring, anti-ß glucan antibodies (ABA). The formation of Imprime-ABA complexes activates complement, primarily via the classical complement pathway, and is opsonized by iC3b. Immune complex binding depends upon Complement Receptor 3 and Fcg Receptor IIa, eliciting phenotypic activation of, and enhanced chemokine production by, neutrophils and monocytes, enabling these effector cells to kill antibody-opsonized tumor cells via the generation of reactive oxygen species and antibody-dependent cellular phagocytosis. Importantly, these innate immune cell changes were not evident in subjects with low ABA levels but could be rescued with exogenous ABA supplementation. Together, these data indicate that pre-existing ABA are essential for Imprime-mediated anti-cancer immune activation and suggest that pre-treatment ABA levels may provide a plausible patient selection biomarker to delineate patients most likely to benefit from Imprime-based therapy.


Subject(s)
Antigen-Antibody Complex/metabolism , Antineoplastic Agents/pharmacology , beta-Glucans/pharmacology , Antigen-Antibody Complex/immunology , Antineoplastic Agents/chemistry , HEK293 Cells , Humans , Immunity, Innate/drug effects , Macrophage-1 Antigen/metabolism , Receptors, IgG/metabolism , beta-Glucans/chemistry , beta-Glucans/immunology
4.
J Clin Invest ; 126(6): 2181-90, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27159396

ABSTRACT

Neurofibromin 1-mutant (NF1-mutant) cancers are driven by excessive Ras signaling; however, there are currently no effective therapies for these or other Ras-dependent tumors. While combined MEK and mTORC1 suppression causes regression of NF1-deficient malignancies in animal models, the potential toxicity of cotargeting these 2 major signaling pathways in humans may necessitate the identification of more refined, cancer-specific signaling nodes. Here, we have provided evidence that MAPK-interacting kinases (MNKs), which converge on the mTORC1 effector eIF4E, are therapeutic targets in NF1-deficient malignancies. Specifically, we evaluated primary human NF1-deficient peripheral nervous system tumors and found that MNKs are activated in the majority of tumors tested. Genetic and chemical suppression of MNKs in NF1-deficient murine tumor models and human cell lines potently cooperated with MEK inhibitors to kill these cancers through effects on eIF4E. We also demonstrated that MNK kinases are important and direct targets of cabozantinib. Accordingly, coadministration of cabozantinib and MEK inhibitors triggered dramatic regression in an aggressive genetically engineered tumor model. The cytotoxicity of this combination required the suppression of MNK-induced eIF4E phosphorylation and was not recapitulated by suppressing other cabozantinib targets. Collectively, these studies demonstrate that combined MNK and MEK suppression represents a promising therapeutic strategy for these incurable Ras-driven tumors and highlight the utility of developing selective MNK inhibitors for these and possibly other malignancies.


Subject(s)
MAP Kinase Kinase Kinases/antagonists & inhibitors , Mutation , Nerve Sheath Neoplasms/drug therapy , Nerve Sheath Neoplasms/genetics , Neurofibromin 1/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Anilides/administration & dosage , Animals , Cell Line, Tumor , Genes, Neurofibromatosis 1 , Humans , Mechanistic Target of Rapamycin Complex 1 , Mice , Multiprotein Complexes/metabolism , Nerve Sheath Neoplasms/metabolism , Nucleocytoplasmic Transport Proteins/antagonists & inhibitors , Phosphorylation , Protein Kinase Inhibitors/administration & dosage , Pyridines/administration & dosage , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
5.
Br J Cancer ; 114(4): 444-53, 2016 02 16.
Article in English | MEDLINE | ID: mdl-26882068

ABSTRACT

BACKGROUND: Melanoma is a disease that primarily arises in the skin but is a derivative of the neural crest. Eukaryotic translation initiation factor 4E (eIF4E) regulates translation of multiple malignancy-associated mRNAs and is overexpressed in many epithelial tumours. However, expression in human tumours derived from the neural crest is unknown. Here, we determined the association of eIF4E and phospho-eIF4E expression in melanocytic lesions with malignant conversion, metastatic potential and patient survival. METHODS: Archived formalin-fixed, paraffin-embedded surgical specimens from 114 patients with melanocytic lesions were stained immunohistochemically for eIF4E and phospho-eIF4E and evaluated semiquantitatively. The relationship between cytoplasmic and nuclear eIF4E and phospho-eIF4E protein expression, melanocytic lesion subtype and tumour progression was determined. Kaplan-Meier survival analyses and Cox proportional hazard regression were performed. RESULTS: Increased eIF4E and phospho-eIF4E expression was highly associated with malignancy (P<0.0001). High nuclear phospho-eIF4E was associated with synchronous or future metastasis (P=0.0059). Kaplan-Meier analyses demonstrated highly significant associations between high histoscores for cytoplasmic and nuclear phospho-eIF4E and reduced survival in all patients (P=0.0003 and 0.0009, respectively). CONCLUSIONS: Increased melanoma expression of eIF4E and phospho-eIF4E is associated with metastatic potential, reduced survival and increased risk of death.


Subject(s)
Biomarkers, Tumor/metabolism , Eukaryotic Initiation Factor-4E/metabolism , Melanoma/metabolism , Serine/metabolism , Adult , Disease Progression , Female , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Male , Melanoma/mortality , Melanoma/pathology , Phosphorylation , Retrospective Studies
6.
Cell Rep ; 9(5): 1742-1755, 2014 Dec 11.
Article in English | MEDLINE | ID: mdl-25466251

ABSTRACT

Fragile X syndrome (FXS) is the leading genetic cause of autism. Mutations in Fmr1 (fragile X mental retardation 1 gene) engender exaggerated translation resulting in dendritic spine dysmorphogenesis, synaptic plasticity alterations, and behavioral deficits in mice, which are reminiscent of FXS phenotypes. Using postmortem brains from FXS patients and Fmr1 knockout mice (Fmr1(-/y)), we show that phosphorylation of the mRNA 5' cap binding protein, eukaryotic initiation factor 4E (eIF4E), is elevated concomitant with increased expression of matrix metalloproteinase 9 (MMP-9) protein. Genetic or pharmacological reduction of eIF4E phosphorylation rescued core behavioral deficits, synaptic plasticity alterations, and dendritic spine morphology defects via reducing exaggerated translation of Mmp9 mRNA in Fmr1(-/y) mice, whereas MMP-9 overexpression produced several FXS-like phenotypes. These results uncover a mechanism of regulation of synaptic function by translational control of Mmp-9 in FXS, which opens the possibility of new treatment avenues for the diverse neurological and psychiatric aspects of FXS.


Subject(s)
Benzofurans/pharmacology , Eukaryotic Initiation Factor-4E/physiology , Fragile X Syndrome/drug therapy , Matrix Metalloproteinase 9/genetics , Protein Biosynthesis/drug effects , Adenosine Triphosphatases/antagonists & inhibitors , Animals , Autistic Disorder/enzymology , Benzofurans/therapeutic use , Brain/enzymology , Cation Transport Proteins/antagonists & inhibitors , Cells, Cultured , Copper-Transporting ATPases , Dendritic Spines/pathology , Enzyme Induction/drug effects , Female , Fragile X Syndrome/enzymology , Fragile X Syndrome/genetics , Humans , Male , Matrix Metalloproteinase 9/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Phenotype , Phosphorylation , Protein Processing, Post-Translational , Receptors, Metabotropic Glutamate/genetics , Receptors, Metabotropic Glutamate/metabolism
7.
Mol Cancer Ther ; 13(2): 364-74, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24356814

ABSTRACT

p38α mitogen-activated protein kinase (MAPK) is activated in cancer cells in response to environmental factors, oncogenic stress, radiation, and chemotherapy. p38α MAPK phosphorylates a number of substrates, including MAPKAP-K2 (MK2), and regulates the production of cytokines in the tumor microenvironment, such as TNF-α, interleukin-1ß (IL-1ß), IL-6, and CXCL8 (IL-8). p38α MAPK is highly expressed in human cancers and may play a role in tumor growth, invasion, metastasis, and drug resistance. LY2228820 dimesylate (hereafter LY2228820), a trisubstituted imidazole derivative, is a potent and selective, ATP-competitive inhibitor of the α- and ß-isoforms of p38 MAPK in vitro (IC(50) = 5.3 and 3.2 nmol/L, respectively). In cell-based assays, LY2228820 potently and selectively inhibited phosphorylation of MK2 (Thr334) in anisomycin-stimulated HeLa cells (at 9.8 nmol/L by Western blot analysis) and anisomycin-induced mouse RAW264.7 macrophages (IC(50) = 35.3 nmol/L) with no changes in phosphorylation of p38α MAPK, JNK, ERK1/2, c-Jun, ATF2, or c-Myc ≤ 10 µmol/L. LY2228820 also reduced TNF-α secretion by lipopolysaccharide/IFN-γ-stimulated macrophages (IC(50) = 6.3 nmol/L). In mice transplanted with B16-F10 melanoma, tumor phospho-MK2 (p-MK2) was inhibited by LY2228820 in a dose-dependent manner [threshold effective dose (TED)(70) = 11.2 mg/kg]. Significant target inhibition (>40% reduction in p-MK2) was maintained for 4 to 8 hours following a single 10 mg/kg oral dose. LY2228820 produced significant tumor growth delay in multiple in vivo cancer models (melanoma, non-small cell lung cancer, ovarian, glioma, myeloma, breast). In summary, LY2228820 is a p38 MAPK inhibitor, which has been optimized for potency, selectivity, drug-like properties (such as oral bioavailability), and efficacy in animal models of human cancer.


Subject(s)
Imidazoles/pharmacology , Neoplasms/drug therapy , Pyridines/pharmacology , Xenograft Model Antitumor Assays , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Adenosine Triphosphate/metabolism , Animals , Anisomycin/pharmacology , Binding Sites , Blotting, Western , Cell Line , Cell Line, Tumor , Cells, Cultured , Cytokines/metabolism , Dose-Response Relationship, Drug , HeLa Cells , Humans , Imidazoles/chemistry , Macrophages/drug effects , Macrophages/metabolism , Melanoma, Experimental/drug therapy , Melanoma, Experimental/pathology , Mice , Molecular Structure , Neoplasms/genetics , Neoplasms/metabolism , Phosphorylation/drug effects , Pyridines/chemistry , RNA Interference , Treatment Outcome , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
8.
PLoS One ; 8(11): e81669, 2013.
Article in English | MEDLINE | ID: mdl-24260583

ABSTRACT

BACKGROUND: Aberrant cap-dependent translation is implicated in tumorigenesis in multiple tumor types including mesothelioma. In this study, disabling the eIF4F complex by targeting eIF4E with eIF4E-specific antisense oligonucleotide (4EASO) is assessed as a therapy for mesothelioma. METHODS: Mesothelioma cells were transfected with 4EASO, designed to target eIF4E mRNA, or mismatch-ASO control. Cell survival was measured in mesothelioma treated with 4EASO alone or combined with either gemcitabine or pemetrexed. Levels of eIF4E, ODC, Bcl-2 and ß-actin were assessed following treatment. Binding to a synthetic cap-analogue was used to study the strength of eIF4F complex activation following treatment. RESULTS: eIF4E level and the formation of eIF4F cap-complex decreased in response to 4EASO, but not mismatch control ASO, resulting in cleavage of PARP indicating apoptosis. 4EASO treatment resulted in dose dependent decrease in eIF4E levels, which corresponded to cytotoxicity of mesothelioma cells. 4EASO resulted in decreased levels of eIF4E in non-malignant LP9 cells, but this did not correspond to increased cytotoxicity. Proteins thought to be regulated by cap-dependent translation, Bcl-2 and ODC, were decreased upon treatment with 4EASO. Combination therapy of 4EASO with pemetrexed or gemcitabine further reduced cell number. CONCLUSION: 4EASO is a novel drug that causes apoptosis and selectively reduces eIF4E levels, eIF4F complex formation, and proliferation of mesothelioma cells. eIF4E knockdown results in decreased expression of anti-apoptotic and pro-growth proteins and enhances chemosensitivity.


Subject(s)
Eukaryotic Initiation Factor-4E/antagonists & inhibitors , Eukaryotic Initiation Factor-4F/antagonists & inhibitors , Mesothelioma/genetics , Oligonucleotides, Antisense/genetics , RNA, Messenger/antagonists & inhibitors , Actins/genetics , Actins/metabolism , Antineoplastic Agents/pharmacology , Apoptosis , Cell Count , Cell Line, Tumor , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4E/metabolism , Eukaryotic Initiation Factor-4F/genetics , Eukaryotic Initiation Factor-4F/metabolism , Gene Expression , Glutamates/pharmacology , Guanine/analogs & derivatives , Guanine/pharmacology , Humans , Mesothelioma/metabolism , Mesothelioma/pathology , Molecular Targeted Therapy , Oligonucleotides, Antisense/metabolism , Ornithine Decarboxylase/genetics , Ornithine Decarboxylase/metabolism , Pemetrexed , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , Protein Binding , Protein Biosynthesis/drug effects , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transfection , Gemcitabine
9.
Blood ; 121(18): 3675-81, 2013 May 02.
Article in English | MEDLINE | ID: mdl-23509154

ABSTRACT

Mnk kinases regulate the phosphorylation and activation of the eukaryotic initiation factor 4E (eIF4E), a protein that plays key roles in the initiation of messenger RNA translation and whose activity is critical for various cellular functions. eIF4E is deregulated in acute myeloid leukemia (AML), and its aberrant activity contributes to leukemogenesis. We determined whether cercosporamide, an antifungal agent that was recently shown to act as a unique Mnk inhibitor, exhibits antileukemic properties. Treatment of AML cells with cercosporamide resulted in a dose-dependent suppression of eIF4E phosphorylation. Such suppression of Mnk kinase activity and eIF4E phosphorylation by cercosporamide resulted in dose-dependent suppressive effects on primitive leukemic progenitors (CFU-L) from AML patients and enhanced the antileukemic properties of cytarabine (Ara-C) or mammalian target of rapamycin (mTOR) complex 1 inhibition. Similarly, the combination of cercosporamide with cytarabine resulted in enhanced antileukemic responses in a xenograft mouse model in vivo. Altogether, this work demonstrates that the unique Mnk inhibitor cercosporamide suppresses phosphorylation of eIF4E and exhibits antileukemic effects, in support of future clinical-translational efforts involving combinations of Mnk inhibitors with cytarabine and/or mTOR inhibitors for the treatment of AML.


Subject(s)
Adenosine Triphosphatases/antagonists & inhibitors , Antineoplastic Agents/therapeutic use , Benzofurans/therapeutic use , Cation Transport Proteins/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Protein Kinase Inhibitors/therapeutic use , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Copper-Transporting ATPases , Down-Regulation/drug effects , Humans , K562 Cells , Mice , Neoplastic Stem Cells/drug effects , U937 Cells , Xenograft Model Antitumor Assays
10.
Invest New Drugs ; 31(4): 833-44, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23275061

ABSTRACT

The HGF/MET signaling pathway regulates a wide variety of normal cellular functions that can be subverted to support neoplasia, including cell proliferation, survival, apoptosis, scattering and motility, invasion, and angiogenesis. MET over-expression (with or without gene amplification), aberrant autocrine or paracrine ligand production, and missense MET mutations are mechanisms that lead to activation of the MET pathway in tumors and are associated with poor prognostic outcome. We report here preclinical development of a potent, orally bioavailable, small-molecule inhibitor LY2801653 targeting MET kinase. LY2801653 is a type-II ATP competitive, slow-off inhibitor of MET tyrosine kinase with a dissociation constant (Ki) of 2 nM, a pharmacodynamic residence time (Koff) of 0.00132 min(-1) and t1/2 of 525 min. LY2801653 demonstrated in vitro effects on MET pathway-dependent cell scattering and cell proliferation; in vivo anti-tumor effects in MET amplified (MKN45), MET autocrine (U-87MG, and KP4) and MET over-expressed (H441) xenograft models; and in vivo vessel normalization effects. LY2801653 also maintained potency against 13 MET variants, each bearing a single-point mutation. In subsequent nonclinical characterization, LY2801653 was found to have potent activity against several other receptor tyrosine oncokinases including MST1R, FLT3, AXL, MERTK, TEK, ROS1, DDR1/2 and against the serine/threonine kinases MKNK1/2. The potential value of MET and other inhibited targets within a number of malignancies (such as colon, bile ducts, and lung) is discussed. LY2801653 is currently in phase 1 clinical testing in patients with advanced cancer (trial I3O-MC-JSBA, NCT01285037).


Subject(s)
Indazoles/pharmacology , Niacinamide/analogs & derivatives , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Tetrazoles/pharmacology , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biological Availability , Blood Vessels/drug effects , Blood Vessels/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Indazoles/administration & dosage , Indazoles/chemistry , Mice , Mutation/genetics , Niacinamide/administration & dosage , Niacinamide/chemistry , Niacinamide/pharmacology , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-met/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Tetrazoles/administration & dosage , Tetrazoles/chemistry , Xenograft Model Antitumor Assays
11.
Cancer Res ; 71(5): 1849-57, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21233335

ABSTRACT

Activation of the translation initiation factor 4E (eIF4E) promotes malignant transformation and metastasis. Signaling through the AKT-mTOR pathway activates eIF4E by phosphorylating the inhibitory 4E binding proteins (4E-BP). This liberates eIF4E and allows binding to eIF4G. eIF4E can then be phosphorylated at serine 209 by the MAPK-interacting kinases (Mnk), which also interact with eIF4G. Although dispensable for normal development, Mnk function and eIF4E phosphorylation promote cellular proliferation and survival and are critical for malignant transformation. Accordingly, Mnk inhibition may serve as an attractive cancer therapy. We now report the identification of a potent, selective and orally bioavailable Mnk inhibitor that effectively blocks 4E phosphorylation both in vitro and in vivo. In cultured cancer cell lines, Mnk inhibitor treatment induces apoptosis and suppresses proliferation and soft agar colonization. Importantly, a single, orally administered dose of this Mnk inhibitor substantially suppresses eIF4E phosphorylation for at least 4 hours in human xenograft tumor tissue and mouse liver tissue. Moreover, oral dosing with the Mnk inhibitor significantly suppresses outgrowth of experimental B16 melanoma pulmonary metastases as well as growth of subcutaneous HCT116 colon carcinoma xenograft tumors, without affecting body weight. These findings offer the first description of a novel, orally bioavailable MNK inhibitor and the first preclinical proof-of-concept that MNK inhibition may provide a tractable cancer therapeutic approach.


Subject(s)
Antineoplastic Agents/pharmacology , Benzofurans/pharmacology , Eukaryotic Initiation Factor-4E/metabolism , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Lung Neoplasms/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Apoptosis/drug effects , Base Sequence , Blotting, Western , Cell Proliferation/drug effects , Female , Humans , Inhibitory Concentration 50 , Intracellular Signaling Peptides and Proteins/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mice , Mice, Nude , Molecular Sequence Data , Neoplasm Metastasis/drug therapy , Phosphorylation , Polymerase Chain Reaction , Protein Serine-Threonine Kinases/genetics , Xenograft Model Antitumor Assays
12.
Mol Cancer Ther ; 9(12): 3158-63, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20971826

ABSTRACT

Enzastaurin (LY317615.HCl) is currently in a phase III registration trial for diffuse large B-Cell lymphoma and numerous phase II clinical trials. Enzastaurin suppresses angiogenesis and induces apoptosis in multiple human tumor cell lines by inhibiting protein kinase C (PKC) and phosphoinositide 3-kinase (PI3K)/AKT pathway signaling. PI3K/AKT pathway signaling liberates eukaryotic translation initiation factor 4E (eIF4E) through the hierarchical phosphorylation of eIF4E binding proteins (4E-BP). When hypophosphorylated, 4E-BPs associate with eIF4E, preventing eIF4E from binding eIF4G, blocking the formation of the eIF4F translation initiation complex. Herein, we show that enzastaurin treatment impacts signaling throughout the AKT/mTOR pathway leading to hypophosphorylation of 4E-BP1 in cancer cells of diverse lineages (glioblastoma, colon carcinoma, and B-cell lymphoma). Accordingly, enzastaurin treatment increases the amount of eIF4E bound to 4E-BP1 and decreases association of eIF4E with eIF4G, thereby reducing eIF4F translation initiation complex levels. We therefore chose to evaluate whether this effect on 4E-BP1 was involved in enzastaurin-induced apoptosis. Remarkably, enzastaurin-induced apoptosis was blocked in cancer cells depleted of 4E-BP1 by siRNAs, or in 4EBP1/2 knockout murine embryonic fibroblasts cells. Furthermore, eIF4E expression was increased and 4E-BP1 expression was decreased in cancer cells selected for reduced sensitivity to enzastaurin-induced apoptosis. These data highlight the importance of modulating 4E-BP1 function, and eIF4F complex levels, in the direct antitumor effect of enzastaurin and suggest that 4E-BP1 function may serve as a promising determinant of enzastaurin activity.


Subject(s)
Apoptosis/drug effects , Carrier Proteins/metabolism , Indoles/pharmacology , Phosphoproteins/metabolism , Adaptor Proteins, Signal Transducing , Animals , Cell Cycle Proteins , Cell Line, Tumor , Drug Screening Assays, Antitumor , Eukaryotic Initiation Factor-4F/metabolism , Eukaryotic Initiation Factors , Gene Knockout Techniques , Humans , Mice , Mice, Knockout , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
13.
Cancer Res ; 69(9): 3866-73, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19383915

ABSTRACT

Elevated eukaryotic translation initiation factor 4E (eIF4E) function induces malignancy in experimental models by selectively enhancing translation of key malignancy-related mRNAs (c-myc and BCL-2). eIF4E activation may reflect increased eIF4E expression or phosphorylation of its inhibitory binding proteins (4E-BP). By immunohistochemical analyses of 148 tissues from 89 prostate cancer patients, we now show that both eIF4E expression and 4E-BP1 phosphorylation (p4E-BP1) are increased significantly, particularly in advanced prostate cancer versus benign prostatic hyperplasia tissues. Further, increased eIF4E and p4E-BP1 levels are significantly related to reduced patient survival, whereas uniform 4E-BP1 expression is significantly related to better patient survival. Both immunohistochemistry and Western blotting reveal that elevated eIF4E and p4E-BP1 are evident in the same prostate cancer tissues. In two distinct prostate cancer cell models, the progression to androgen independence also involves increased eIF4E activation. In these prostate cancer cells, reducing eIF4E expression with an eIF4E-specific antisense oligonucleotide currently in phase I clinical trials robustly induces apoptosis, regardless of cell cycle phase, and reduces expression of the eIF4E-regulated proteins BCL-2 and c-myc. Collectively, these data implicate eIF4E activation in prostate cancer and suggest that targeting eIF4E may be attractive for prostate cancer therapy.


Subject(s)
Eukaryotic Initiation Factor-4E/biosynthesis , Prostatic Neoplasms/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis/physiology , Cell Cycle/physiology , Cell Cycle Proteins , Cell Line, Tumor , Disease Progression , Eukaryotic Initiation Factor-4E/genetics , Humans , Immunohistochemistry , Male , Oligonucleotides, Antisense/genetics , Phosphoproteins/metabolism , Phosphorylation , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-bcl-2/biosynthesis , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-myc/metabolism
14.
Cell Cycle ; 7(16): 2466-71, 2008 Aug 15.
Article in English | MEDLINE | ID: mdl-18719377

ABSTRACT

In multiple human cancers, the function of the eukaryotic translation initiation factor 4E (eIF4E) is elevated and directly related to disease progression. Overexpression or hyperactivation of eIF4E in experimental models can drive cellular transformation and malignant progression. Elevated eIF4E function triggers enhanced assembly of the eIF4F translation initiation complex and thereby drives cap-dependent translation. Though all capped mRNAs require eIF4F for translation, a pool of mRNAs are exceptionally dependent on elevated eIF4F activity for translation and are thereby selectively and disproportionately affected by altered eIF4F activity. These mRNAs encode proteins that play significant roles in all aspects of malignancy including angiogenesis factors (VEGF, FGF-2), onco-proteins (c-myc, cyclin D1, ODC), pro-survival proteins (survivin, BCL-2) and proteins involved in tumor invasion and metastasis (MMP-9, heparanase). Recent advances in targeting the eIF4F complex have highlighted the role for this complex in tumor cell survival and angiogenesis and have illuminated the enhanced susceptibility of the tumor cells to inhibition of the eIF4F complex. These studies have demonstrated the attractiveness and plausibility of targeting eIF4E and the eIF4F translation initiation complex for cancer therapy and have prompted the advance of the first eIF4E-specific therapy to the clinic.


Subject(s)
Eukaryotic Initiation Factor-4F/antagonists & inhibitors , Neoplasms/therapy , Neovascularization, Pathologic/therapy , Oncogene Proteins/antagonists & inhibitors , RNA, Messenger/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Eukaryotic Initiation Factor-4F/genetics , Eukaryotic Initiation Factor-4F/metabolism , Humans , Mice , Neoplasms/blood supply , Neoplasms/metabolism , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/therapeutic use , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , RNA, Messenger/biosynthesis
15.
Cancer Res ; 68(3): 631-4, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-18245460

ABSTRACT

The eukaryotic translation initiation factor 4E (eIF4E) is frequently overexpressed in human cancers in relation to disease progression and drives cellular transformation, tumorigenesis, and metastatic progression in experimental models. Enhanced eIF4E function results from eIF4E overexpression and/or activation of the ras and phosphatidylinositol 3-kinase/AKT pathways and selectively increases the translation of key mRNAs involved in tumor growth, angiogenesis, and cell survival. Consequently, by simultaneously and selectively reducing the expression of numerous potent growth and survival factors critical for malignancy, targeting eIF4E for inhibition may provide an attractive therapy for many different tumor types. Recent work has now shown the plausibility of therapeutically targeting eIF4E and has resulted in the advance of the first eIF4E-specific therapy to clinical trials. These studies illustrate the increased susceptibility of tumor tissues to eIF4E inhibition and support the notion that the enhanced eIF4E function common to many tumor types may represent an Achilles' heel for cancer.


Subject(s)
Eukaryotic Initiation Factor-4E/antagonists & inhibitors , Neoplasms/therapy , Animals , Eukaryotic Initiation Factor-4E/biosynthesis , Eukaryotic Initiation Factor-4E/genetics , Humans , Neoplasms/genetics , Neoplasms/metabolism , RNA, Messenger/biosynthesis , RNA, Messenger/genetics
16.
J Clin Invest ; 117(9): 2638-48, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17786246

ABSTRACT

Expression of eukaryotic translation initiation factor 4E (eIF4E) is commonly elevated in human and experimental cancers, promoting angiogenesis and tumor growth. Elevated eIF4E levels selectively increase translation of growth factors important in malignancy (e.g., VEGF, cyclin D1) and is thereby an attractive anticancer therapeutic target. Yet to date, no eIF4E-specific therapy has been developed. Herein we report development of eIF4E-specific antisense oligonucleotides (ASOs) designed to have the necessary tissue stability and nuclease resistance required for systemic anticancer therapy. In mammalian cultured cells, these ASOs specifically targeted the eIF4E mRNA for destruction, repressing expression of eIF4E-regulated proteins (e.g., VEGF, cyclin D1, survivin, c-myc, Bcl-2), inducing apoptosis, and preventing endothelial cells from forming vessel-like structures. Most importantly, intravenous ASO administration selectively and significantly reduced eIF4E expression in human tumor xenografts, significantly suppressing tumor growth. Because these ASOs also target murine eIF4E, we assessed the impact of eIF4E reduction in normal tissues. Despite reducing eIF4E levels by 80% in mouse liver, eIF4E-specific ASO administration did not affect body weight, organ weight, or liver transaminase levels, thereby providing the first in vivo evidence that cancers may be more susceptible to eIF4E inhibition than normal tissues. These data have prompted eIF4E-specific ASO clinical trials for the treatment of human cancers.


Subject(s)
Eukaryotic Initiation Factor-4E/metabolism , Gene Expression Regulation, Neoplastic , Neoplasms/metabolism , Neoplasms/therapy , Protein Biosynthesis/genetics , Animals , Apoptosis , Base Sequence , Cells, Cultured , Endothelial Cells/metabolism , Eukaryotic Initiation Factor-4E/genetics , Humans , Mice , Neoplasms/blood supply , Neoplasms/pathology , Xenograft Model Antitumor Assays
17.
Clin Cancer Res ; 12(2): 392-7, 2006 Jan 15.
Article in English | MEDLINE | ID: mdl-16428477

ABSTRACT

PURPOSE: The transforming growth factor-beta (TGF-beta) signaling pathway has been frequently implicated in breast cancer. An intronic variant (Int7G24A) of TGF-beta receptor type I (TGFBR1) is associated with kidney and bladder cancers in our recent study. We hypothesize that this germline variant may be involved in development and progression of breast cancer. EXPERIMENTAL DESIGN: Case-control studies were designed from archived paraffin-embedded tissue specimens from the same geographic area with a homogenous ethnic population. We analyzed 223 patients (25 with preinvasive tumors and 198 with invasive and metastatic breast cancers) and 153 noncancer controls. The Int7G24A was identified by PCR-RFLP. Another germline deletion (TGFBR1*6A) and somatic mutations in the TGFBR1 were also analyzed by PCR and single-strand conformational polymorphism. RESULTS: The Int7G24A allele was evident in 32% of patients with preinvasive neoplasms and 48% of patients with invasive breast cancers compared with 26% controls (P = 0.00008). In addition, 11 (5.6%) homozygous Int7G24A carriers were found in patients with invasive breast cancers, whereas only 3 (2%) homozygous carriers were found in the control group. The TGFBR1*6A allele was not significantly associated with breast cancer patients and only one somatic mutation was found in 71 breast cancers. CONCLUSION: These data suggest that the germline Int7G24A variant may represent a risk factor for invasive breast cancer and a marker for breast cancer progression. A separate study with a larger sample size is warranted to validate the association of the Int7G24A with human breast cancer.


Subject(s)
Activin Receptors, Type I/genetics , Breast Neoplasms/genetics , Genetic Variation , Introns/genetics , Neoplasm Invasiveness/genetics , Receptors, Transforming Growth Factor beta/genetics , Adult , Aged , Aged, 80 and over , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/genetics , Carcinoma, Ductal, Breast/metabolism , Carcinoma, Ductal, Breast/secondary , Carcinoma, Lobular/genetics , Carcinoma, Lobular/metabolism , Carcinoma, Lobular/secondary , Case-Control Studies , Disease Progression , Female , Germ-Line Mutation/genetics , Humans , Male , Middle Aged , Neoplasm Invasiveness/pathology , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Polymorphism, Single-Stranded Conformational , Protein Serine-Threonine Kinases , Receptor, Transforming Growth Factor-beta Type I , Risk Factors , Sequence Deletion/genetics
18.
Cancer Res ; 65(16): 7462-9, 2005 Aug 15.
Article in English | MEDLINE | ID: mdl-16103100

ABSTRACT

Activation of protein kinase Cbeta (PKCbeta) has been repeatedly implicated in tumor-induced angiogenesis. The PKCbeta-selective inhibitor, Enzastaurin (LY317615.HCl), suppresses angiogenesis and was advanced for clinical development based upon this antiangiogenic activity. Activation of PKCbeta has now also been implicated in tumor cell proliferation, apoptosis, and tumor invasiveness. Herein, we show that Enzastaurin has a direct effect on human tumor cells, inducing apoptosis and suppressing the proliferation of cultured tumor cells. Enzastaurin treatment also suppresses the phosphorylation of GSK3betaser9, ribosomal protein S6(S240/244), and AKT(Thr308). Oral dosing with Enzastaurin to yield plasma concentrations similar to those achieved in clinical trials significantly suppresses the growth of human glioblastoma and colon carcinoma xenografts. As in cultured tumor cells, Enzastaurin treatment suppresses the phosphorylation of GSK3beta in these xenograft tumor tissues. Enzastaurin treatment also suppresses GSK3beta phosphorylation to a similar extent in peripheral blood mononuclear cells (PBMCs) from these treated mice. These data show that Enzastaurin has a direct antitumor effect and that Enzastaurin treatment suppresses GSK3beta phosphorylation in both tumor tissue and in PBMCs, suggesting that GSK3beta phosphorylation may serve as a reliable pharmacodynamic marker for Enzastaurin activity. With previously published reports, these data support the notion that Enzastaurin suppresses tumor growth through multiple mechanisms: direct suppression of tumor cell proliferation and the induction of tumor cell death coupled to the indirect effect of suppressing tumor-induced angiogenesis.


Subject(s)
Apoptosis/drug effects , Colonic Neoplasms/drug therapy , Glioblastoma/drug therapy , Indoles/pharmacology , Protein Kinase C/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Animals , Cell Growth Processes/drug effects , Colonic Neoplasms/enzymology , Colonic Neoplasms/pathology , Female , Glioblastoma/enzymology , Glioblastoma/pathology , Glycogen Synthase Kinase 3/antagonists & inhibitors , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , HCT116 Cells , Humans , Male , Mice , Mice, Nude , Phosphorylation/drug effects , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/pathology , Protein Kinase C beta , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-akt , Ribosomal Protein S6/antagonists & inhibitors , Ribosomal Protein S6/metabolism , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
19.
Mol Cancer Res ; 3(3): 163-9, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15798096

ABSTRACT

The progression of human prostate cancer from the initial androgen-dependent phase to androgen independence involves diminished apoptosis and a release from the cell cycle block triggered by androgen ablation therapy. FOXO transcription factors play a central role in promoting expression of proapoptotic and cell cycle regulatory genes (e.g., FasL and p27KIP1). Reduced FOXO function might, therefore, play a role in androgen-independent progression of human prostate cancer. Herein, we show that FOXO function is compromised in androgen-independent prostate cancer cells (LNAI) versus androgen-dependent LNCaP cells. The FOXO3a protein, the most highly expressed FOXO family member in prostate cancer cells, is hyperphosphorylated in LNAI cells. FOXO3a expression is also markedly reduced in these androgen-independent LNAI cells when compared with parental LNCaP cells. Together, reduced FOXO3a expression coupled to FOXO3a hyperphosphorylation would suppress FOXO transcriptional activity. Accordingly, activity of the FOXO-responsive p27KIP1 promoter is reduced 60% in these LNAI cells when compared with LNCaP cells. Moreover, mutation of a conserved FOXO response element suppresses p27KIP1 promoter activity, substantiating a regulatory role for this FOXO response element in p27KIP1 promoter transactivation. Finally, we show that the activity of a distinct FOXO-responsive promoter, the 3X-IRS promoter, is also reduced in LNAI cells. Collectively, these data show that reduced FOXO3a expression coupled to increased FOXO3a phosphorylation coincide with reduced FOXO-responsive promoter activity in androgen-independent LNAI cells when compared with androgen-dependent LNCaP cells. To the extent that this model reflects human disease, these data suggest that FOXO function may be compromised with androgen-independent progression of human prostate cancer.


Subject(s)
Androgens/metabolism , Cell Cycle Proteins/genetics , DNA-Binding Proteins/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Transcription Factors/metabolism , Transcriptional Activation , Tumor Suppressor Proteins/genetics , Blotting, Western , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p27 , Disease Progression , Forkhead Box Protein O1 , Forkhead Transcription Factors , Humans , Male , Phosphorylation , Plasmids/metabolism , Promoter Regions, Genetic , Prostatic Neoplasms/genetics , Response Elements , Signal Transduction , Transfection , Tumor Suppressor Proteins/metabolism
20.
Clin Lung Cancer ; 6(3): 184-9, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15555220

ABSTRACT

Current treatments of non-small-cell lung cancer (NSCLC) are inadequate and new therapies are being developed that target specific cellular signaling proteins associated with tumor growth. One potential target is protein kinase C (PKC)-alpha, a signaling molecule with an important role in cell regulation and proliferation. The present study examines the expression levels of PKC-alpha in NSCLC to better understand the distribution of PKC-alpha in NSCLC. We analyzed tumor specimens from an independent tumor tissue bank to determine PKC-alpha protein and messenger RNA gene expression in NSCLC. In addition, we used publicly available gene expression array data to further understand PKC-a-associated gene expression profiles in NSCLC. We found that PKC-alpha is highly expressed in < or = 20% of patients with NSCLC. We also found that PKC-alpha was preferentially expressed in adenocarcinoma compared with squamous cell carcinoma of the lung.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Gene Expression Profiling , Lung Neoplasms/genetics , Protein Kinase C/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Lung Neoplasms/pathology , Oligonucleotide Array Sequence Analysis , Protein Kinase C-alpha , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...